84 research outputs found

    Litter drives ecosystem and plant community changes in cattail invasion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116913/1/eap2009192398.pd

    Plant-Environment Feedbacks in a Native and Invasive System.

    Full text link
    Individual plants interact through a variety of mechanisms creating plant-soil feedbacks, in which a plant affects the environment, and this change feeds back to influence the performance of that plant and other members of the community. Feedbacks can have consequences at the community and ecosystem levels; however, despite the large body of work on component processes, how measured interactions among individuals actually affect large-scale patterns of species composition, diversity, and invasion remains largely untested. In this dissertation, I use a combination of 1) spatiotemporal surveys and modeling and 2) measurements of interactions in field experiments, to test the mechanisms through which plants interact and the importance of these interactions in driving community structure and dynamics in two systems, temperate wetlands invaded by hybrid cattail and native dry grasslands. Positive feedbacks are predicted to be important for explaining dominance of invasive species, because modification of the environment to their own benefit would further their invasion. Negative feedbacks are predicted to dominate in native systems where they lead to limitation of conspecific growth, promoting coexistence. In the invaded system, experiments suggest that hybrid cattail (Typha x glauca) produces positive feedbacks: it increases nitrogen cycling twofold and decreases light through high litter production, an environment in which cattail performs well but native species decline. These positive feedbacks could contribute to the pattern found in field surveys that T. x glauca was associated with locally high soil nutrients, low light, and large amounts of litter, and that native diversity was highest in areas of shallow litter depth. In the native grassland system, both transplant experiments and fitting models to survey data suggest that negative feedbacks are common: conspecifics inhibit the individual and population growth of each of the dominant species more than heterospecifics. The intermediaries in these negative feedbacks include soil nitrate and light reduction, however other unmeasured soil properties, such as pathogens or mycorrhizae, also likely play a role. Overall, this suggests that the balance of interactions may shift from negative feedbacks in native systems to positive in invasive systems, which contributes to the coexistence among natives and dominance of invasives.Ph.D.Ecology and Evolutionary BiologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75819/1/ecfarrer_1.pd

    Generalized Forward-Backward Splitting with Penalization for Monotone Inclusion Problems

    Full text link
    We introduce a generalized forward-backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximal monotone operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the considered monotone inclusion problem, provided the condition corresponded to the Fitzpatrick function of the operator describing the set of the normal cone is fulfilled. Under strong monotonicity of an operator, we show strong convergence of the iterates. Furthermore, we utilize the proposed method for minimizing a large-scale hierarchical minimization problem concerning the sum of differentiable and nondifferentiable convex functions subject to the set of minima of another differentiable convex function. We illustrate the functionality of the method through numerical experiments addressing constrained elastic net and generalized Heron location problems

    Positrons from Primordial Black Hole Microquasars and Gamma-ray Bursts

    Full text link
    We propose several novel scenarios how capture of small sublunar-mass primordial black holes (PBHs) by compact stars, white dwarfs or neutron stars, can lead to distinct short gamma-ray bursts (sGRBs) as well as microquasars (MQs). In addition to providing new signatures, relativistic jets from these systems will accelerate positrons to high energies. We find that if PBHs constitute a sizable fraction of DM, they can significantly contribute to the excess observed in the positron flux by the Pamela, the AMS-02 and the Fermi-LAT experiments. Our proposal combines the beneficial features of astrophysical sources and dark matter.Comment: 9 pages, 2 figures, v2: significant revisions, published version, Physics Letters B (2018

    Sex differences in the genetic architecture of cognitive resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer\u27s disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer\u27s disease neuropathology may uncover novel therapeutic targets to treat Alzheimer\u27s disease. It is well established that there are sex differences in response to Alzheimer\u27s disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer\u27s disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer\u27s disease may be personalized based on their biological sex and genetic context

    Genetic variants and functional pathways associated with resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of older adults exhibit the neuropathological features of Alzheimer\u27s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer\u27s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values \u3c 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values \u3c 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer\u27s disease (P-values \u3e 0.42) nor associated with APOE (P-values \u3e 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer\u27s disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia : The CREAM Consortium

    Get PDF
    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Peer reviewe
    corecore