22 research outputs found

    Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape

    Get PDF
    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, similar to 15 and similar to 30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.Peer reviewe

    Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography

    Get PDF
    We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments

    Consequences of a large-scale fragmentation experiment for Neotropical bats : disentangling the relative importance of local and landscape-scale effects

    Get PDF
    Context Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management. Objectives We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient. Methods We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics. Results Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats. Conclusions Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat

    Environmental factors are stronger predictors of primate species’ distributions than basic biological traits

    Get PDF
    Understanding the neutral, biological and environmental processes driving species distributions is valuable in informing conservation efforts because it will help us predict how species will respond to changes in environmental conditions. Environmental processes affect species differently according to their biological traits, which determine how they interact with their environment. Therefore, functional, trait-based modelling approaches are considered important for predicting distributions and species responses to change but even for data-rich primate communities our understanding of the relationships between traits and environmental conditions is limited. Here we use a large-scale, high-resolution dataset of African diurnal primate distributions, biological traits and environmental conditions to investigate the role of biological traits and environmental trait filtering in primate distributions. We collected data from published sources for 354 sites, and 14 genera with 57 species across Sub-Saharan Africa. We then combined a three-table ordination method, RLQ, with the Fourth Corner approach to test relationships between environmental variables and biological traits and used a mapping approach to visually assess patterning in primate genus and species’ distributions. We found no significant relationships between any groups of environmental variables and biological traits, despite a clear role of environmental filtering in driving genus and species’ distributions. The most important environmental driver of species distributions was temperature seasonality, followed by rainfall. We conclude that the relative flexibility of many primate genera means that not any one particular set of traits drives their species-environment associations, despite the clear role of such associations in their distribution patterns

    Trait-mediated filtering predicts phyllostomid bat responses to habitat disturbance in the Orinoco Llanos

    No full text
    Which functional traits allow a bat species to survive habitat disturbance? Empirical evidence regarding this question remains limited for many tropical regions despite their importance for conservation. Here, we used body mass, wing morphology, trophic level, and diet to identify which traits make phyllostomid bat species more vulnerable to human impacts in the Colombian Orinoco Llanos. Bats were sampled using mist nets in riparian forests, unflooded forests, flooded savannahs, and conventional rice crops on traditional farmlands with high-intensity agriculture and in private reserves with greater ecosystem protection. We tested the associations between species traits and landscape-structure variables (habitat cover and type, number of habitat patches, shortest distance to water) using RLQ and fourth-corner analyses, accounting for both spatial and phylogenetic autocorrela-tion. Trophic level and diet were the most important traits linked to disturbance sensitivity. Our results indicated that rice crop cover, savannah patches, and altered unflooded forest act as a filter, benefiting disturbance-adapted frugivorous genera in farmlands (e.g., Ar-tibeus spp., Carollia spp., Platyrrhinus spp., Uroderma spp.). Conversely, animalivorous species were strongly associated with savannah cover and riparian forests within reserves (e.g., Lampronycteris brachyotis, Lophostoma brasiliense, Micronycteris minuta, Tra-chops cirrhosus). Encouraging the creation of more wildlife-friendly landscapes through payments for ecosystem services across the Colombian Llanos will ensure the long-term persistence of disturbance-sensitive species and sustain a complete set of ecological functions and ecosystem services that these bats provide

    Multiple dimensions of phyllostomid bat biodiversity across ecosystems of the Orinoco Llanos

    No full text
    Understanding the impacts of habitat conversion on species assemblages across multiple biodiversity dimensions (taxonomic, functional, and phylogenetic) and spatial scales is pivotal for implementing effective conservation strategies. Here, we surveyed phyllostomid bats using mist nets in riparian and unflooded forests, flooded savannahs, and conventional rice fields to investigate how changes in habitat quality affect multifaceted diversity from two Colombian farming systems in the Orinoco Llanos: traditional farmlands with high-intensity agriculture (mainly rice production) and Civil Society Nature Reserves with greater ecosystem protection. We used a unified framework based on Hill numbers for quantifying bat taxonomic, functional, and phylogenetic diversity and modeled the relationship of these diversity facets with landscape variables (habitat cover and patch density) across three spatial scales (0.5, 1.5, 3 km) using Bayesian generalized linear mixed-effect models. Our results indicate that increasing human activity toward rice monocultures representative of traditional farmlands negatively affected all diversity facets. In contrast, forested habitats associated mainly with riparian forests within private reserves contained higher taxonomic, functional, and phylogenetic diversity than savannahs and rice fields. However, the differences between riparian forests and rice crops were significant only for phylogenetic diversity, indicating loss of evolutionary history after habitat conversion. At the landscape scale, forest cover was a significant predictor for functional (0.5- and 3-km scale) and phylogenetic diversity (0.5 km), and bats responded negatively at the 3-km scale to rice patch density from a functional diversity perspective. Increasing habitat quality through preserving forest cover and patches should minimize the harmful effects of habitat conversion on multidimensional bat biodiversity. Furthermore, the conservation of riparian forests and the creation of more wildlife-friendly farming, as practiced in the reserves, should be prioritized to ensure high levels of bat taxonomic, functional, and phylogenetic diversity across Orinoco countryside landscapes

    Data from: Does sex matter? Gender-specific responses to forest fragmentation in Neotropical bats

    No full text
    Understanding the consequences of habitat modification on wildlife communities is central to the development of conservation strategies. However, albeit male and female individuals of numerous species are known to exhibit differences in habitat use, sex-specific responses to habitat modification remain little explored. Here, we used a landscape-scale fragmentation experiment to assess, separately for males and females, the effects of fragmentation on the abundance of Carollia perspicillata and Rhinophylla pumilio, two widespread Neotropical frugivorous bats. We predicted that sex-specific responses would arise from higher energetic requirements from pregnancy and lactation in females. Analyses were conducted independently for each season, and we further investigated the joint responses to local and landscape-scale metrics of habitat quality, composition, and configuration. Although males and females responded similarly to a fragmentation gradient composed by continuous forest, fragment interiors, edges, and matrix habitats, we found marked differences between sexes in habitat use for at least one of the seasons. Whereas the sex ratio varied little in continuous forest and fragment interiors, females were found to be more abundant than males in edge and matrix habitats. This difference was more prominent in the dry season, the reproductive season of both species. For both species, abundance responses to local- and landscape-scale predictors differed between sexes and again, differences were more pronounced in the dry season. The results suggest considerable sex-mediated responses to forest disruption and degradation in tropical bats and complement our understanding of the impacts of fragmentation on tropical forest vertebrate communities
    corecore