128 research outputs found

    Evolutionary diversity peaks at mid-elevations along an Amazon-to-Andes elevation gradient

    Get PDF
    Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands

    An annotated checklist of trees and relatives in tropical montane forests from southeast Peru: the importance of continue collecting

    Get PDF
    Los Andes están considerados como los puntos calientes más diversos de los trópicos, dentro de estos se encuentra el Parque Nacional del Manu, cuyas complejas condiciones climáticas y fisiográficas albergan una mega-diversidad y endemismo. En el presente trabajo se presenta una lista anotada de especies arbóreas y afines a lo largo de un gradiente de elevación desde los bosques submontanos a 800 m hasta la línea de bosque a 3625 m en la Reserva de Biosfera del Manu. En base a una red de 21 parcelas permanentes de una hectárea y exploraciones botánicas se sistematiza la información florística por rangos de elevación, distribución geográfica y endemismo. Estos resultados preliminares se traducen en 1108 especies de las cuales el 39.7% son morfoespecies, el 43% de las especies determinadas son registros nuevos para la región del Cusco, 15 especies son nuevos registros para la flora peruana, 40 especies son endémicas para Perú y 30 son potenciales especies nuevas para la ciencia. Adicionalmente, se resalta la expansión del rango altitudinal para el 45.2% de las especies determinadas (302 especies). Estos resultados son una muestra de la alta diversidad arbórea y afines en estos ecosistemas montañosos registrados en tan solo ~20 km de distancia geográfica, además muestra lo escasamente colectados y poco estudiados que se encuentran. Mas colecciones botánicas son necesarias - estos estudios básicos de florística son imperativos para un mejor entendimiento de la distribución de especies y la función del ecosistemas, además ayudará a responder una de las grandes preguntas en la ecología global moderna, ¿Cómo responderán los bosques tropicales al cambio climático global?The tropical Andes and adjacent Amazon are Earth’s highest biodiversity hotspot. Manu National Park in southeastern Peru encompasses an entire watershed, ranging from Andean highlands to Amazonian lowlands, and is a megadiverse landscape on the Andes to Amazon transition. Here we present an annotated checklist of trees and related species is along an elevation gradient in the Manu Biosphere Reserve that runs from sub-montane forests at 800 m elevation up to the tree line at 3625 m. Based on a network of 21 1-hectare permanent tree plots and botanical explorations, the floristic information is systematized by elevation ranges, geographical distribution and endemism. These preliminary results show 1108 species. Of these, 43% are new records for the region of Cusco, 15 species are new records for the Peruvian flora, 40 species are endemics for Peru, and 30 are potential new species for science. Another 39.7% are identified to genus or family level and remain morphospecies. Additionally, we show altitudinal range expansion for 45.2% of identified species (302 species). These results were found in a transect of plots spanning only 20 km of geographic distance, and are a sample of the high tree diversity in these mountainous ecosystems. The data show how poorly collected and understudied these ecosystems are. Basic floristic studies and collections are imperative for a better understanding of species distribution and function of ecosystems, and the basic biodiversity of the tropical Andes. They will also help to answer a major, unresolved question in modern global ecology of how tropical forests will respond to global climate change

    The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective

    Get PDF
    Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling

    Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andes–Amazon elevational gradient

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. Aims: Terrestrial ecosystems are changing in biodiversity, species composition and functional trait composition. To understand the underlying causes of these changes and predict the long-term resilience of the ecosystem to withstand future disturbances, we can evaluate changes in diversity and composition from fossil pollen records. Although diversity can be well estimated from pollen in temperate ecosystems, this is less clear for the hyperdiverse tropics. Moreover, it remains unknown whether functional composition of plant assemblages can be accurately predicted from pollen assemblage composition. Here, we evaluate how community-weighted mean (CWM) traits and diversity indices change along elevation. Location: Amazon–Andes elevation gradient in Peru. Methods: We used 82 modern pollen samples and 59 vegetation plots along the elevation gradient, and calculated CWM traits and diversity indices for each pollen sample and vegetation plot. We also quantified the degree to which taxa are over- or underrepresented by their pollen, by dividing the relative pollen abundance by the relative basal area abundance in the nearby vegetation survey plots (i.e. the R-rel values). Results: We found that CWM wood density increased, and CWM adult height and leaf area decreased with elevation. This change was well predicted by pollen assemblages, indicating that CWM trait–environment relationships based on pollen abundance data provide meaningful results. Diversity (richness, Shannon and Simpson) decreased with elevation for vegetation plots, but these trends could not be observed from pollen assemblages. Conclusions: Our results demonstrate that more research is needed to develop methods that lead to accurate diversity estimates from pollen data in these tropical ecosystems, but that CWM traits can be calculated from pollen data to assess spatial shifts in functional composition. This opens opportunities to calculate CWM traits from fossil pollen data sets in the tropics, with broad implications for improving our understanding and predictions of forest dynamics, functioning and resilience through time.Nederlandse Organisatie voor Wetenschappelijk Onderzoe

    Phylogenetic diversity of Amazonian tree communities

    Get PDF
    Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities

    Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

    Get PDF
    Funding Information: This work is a product of the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk). J.A.G. was funded by the Natural Environment Research Council (NERC; NE/T011084/1 and NE/S011811/1) and the Netherlands Organisation for Scientific Research (NWO) under the Rubicon programme with project number 019.162LW.010. The traits field campaign was funded by a grant to Y.M. from the European Research Council (Advanced Grant GEM-TRAIT: 321131) under the European Union‘s Seventh Framework Programme (FP7/2007-2013), with additional support from NERC Grant NE/D014174/1 and NE/J022616/1 for traits work in Peru, NERC Grant ECOFOR (NE/K016385/1) for traits work in Santarem, NERC Grant BALI (NE/K016369/1) for plot and traits work in Malaysia and ERC Advanced Grant T-FORCES (291585) to Phillips for traits work in Australia. Plot setup in Ghana and Gabon were funded by a NERC Grant NE/I014705/1 and by the Royal Society-Leverhulme Africa Capacity Building Programme. The Malaysia campaign was also funded by NERC GrantNE/K016253/1. Plot inventories in Peru were supported by funding from the US National Science Foundation Long-Term Research in Environmental Biology program (LTREB; DEB 1754647) and the Gordon and Betty Moore Foundation Andes-Amazon Program. Plots inventories in Nova Xavantina (Brazil) were supported by the National Council for Scientific and Technological Development (CNPq), Long Term Ecological Research Program (PELD), Proc. 441244/2016-5, and the Foundation of Research Support of Mato Grosso (FAPEMAT), Project ReFlor, Proc. 589267/2016. During data collection, I.O. was supported by a Marie Curie Fellowship (FP7-PEOPLE-2012-IEF-327990). GEM trait data in Gabon was collected under authorisation to Y.M. and supported by the Gabon National Parks Agency. D.B. was funded by the Fondation Wiener-Anspach. W.D.K. acknowledges support from the Faculty Research Cluster ‘Global Ecology’ of the University of Amsterdam. M.S. was funded by a grant from the Ministry of Education, Youth and Sports of the Czech Republic (INTER-TRANSFER LTT19018). Y.M. is supported by the Jackson Foundation. We thank the two anonymous reviewers and Associate Editor G. Henebry for their insightful comments that helped improved this manuscript.Peer reviewedPostprin

    Phylogenetic diversity of Amazonian tree communities

    Get PDF
    This is the peer reviewed version of the following article: Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I. L., Araujo-Murakami, A., Arets, E. J. M. M., Aymard, G. A., Baraloto, C., Bonal, D., Brienen, R., Cerón, C., Cornejo Valverde, F., Di Fiore, A., Farfan-Rios, W., Feldpausch, T. R., Higuchi, N., Huamantupa-Chuquimaco, I., Laurance, S. G., Laurance, W. F., López-Gonzalez, G., Marimon, B. S., Marimon-Junior, B. H., Monteagudo Mendoza, A., Neill, D., Palacios Cuenca, W., Peñuela Mora, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramirez Angulo, H., Rudas, A., Ruschel, A. R., Salinas Revilla, N., Salomão, R. P., Segalin de Andrade, A., Silman, M. R., Spironello, W., ter Steege, H., Terborgh, J., Toledo, M., Valenzuela Gamarra, L., Vieira, I. C. G., Vilanova Torre, E., Vos, V., Phillips, O. L. (2015), Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21: 1295–1307. doi: 10.1111/ddi.12357, which has been published in final form at 10.1111/ddi.12357Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities.FINCyT - PhD studentshipSchool of Geography of the University of LeedsRoyal Botanic Garden EdinburghNatural Environment Research Council (NERC)Gordon and Betty Moore FoundationEuropean Union's Seventh Framework ProgrammeERCCNPq/PELDNSF - Fellowshi

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures
    corecore