132 research outputs found

    Crack-Free Thick AlGaN Grown on Sapphire using AlN/AlGaN Superlattices for Strain Management

    Get PDF
    We report on an AlN/AlGaN superlattice approach to grow high-Al-content thick n+-AlGaNlayers over c-plane sapphire substrates. Insertion of a set of AlN/AlGaN superlattices is shown to significantly reduce the biaxial tensile strain, thereby resulting in 3-μm-thick, crack-free Al0.2Ga0.8N layers. These high-quality, low-sheet-resistive layers are of key importance to avoid current crowding in quaternary AlInGaN multiple-quantum-well deep-ultraviolet light-emitting diodes over sapphire substrates

    Pulsed Atomic Layer Epitaxy of Quaternary AlInGaN Layers

    Get PDF
    In this letter, we report on a material deposition scheme for quaternary AlxInyGa1−x–yN layers using a pulsed atomic layer epitaxy (PALE) technique. The PALE approach allows accurate control of the quaternary layer composition and thickness by simply changing the number of aluminum,indium, and gallium pulses in a unit cell and the number of unit cell repeats. Using PALE, AlInGaN layers with Al mole fractions in excess of 40% and strong room-temperature photoluminescence peaks at 280 nm can easily be grown even at temperatures lower than 800 °C

    Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    Get PDF
    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results

    Band-Edge Luminesce in Quaternary AlInGaN Light-Emitting Diodes

    Get PDF
    Operation of InGaNmultiple-quantum-well(MQW)light-emitting diodes(LEDs) with quaternary AlInGaN barriers at room and elevated temperatures is reported. The devices outperform conventional GaN/InGaN MQWLEDs, especially at high pump currents. From the measurements of quantum efficiency and total emitted power under dc and pulsed pumping, we show the emission mechanism for quaternary barrier MQWs to be predominantly linked to band-to-band transitions. This is in contrast to localized state emission observed for conventional InGaN/InGaN and GaN/InGaN LEDs. The band-to-band recombination with an increased quantum-well depth improves the high-current performance of the quaternary barrier MQWLEDs, making them attractive for high-power solid-state lighting applications

    GaN Homoepitaxy on Freestanding (11Ì„00) Oriented GaN Substrates

    Get PDF
    We report homoepitaxialGaNgrowth on freestanding (11Ì„00) oriented (M-plane GaN) substrates using low-pressure metalorganic chemical vapor deposition.Scanning electron microscopy,atomic-force microscopy, and photoluminescence were used to study the influence of growth conditions such as the V/III molar ratio and temperature on the surface morphology and optical properties of the epilayers. Optimized growth conditions led to high quality (11Ì„00) oriented GaN epilayers with a smooth surface morphology and strong band-edge emission. These layers also exhibited strong room temperature stimulated emission under high intensity pulsed optical pumping. Since for III-N materials the (11Ì„00) crystal orientation is free from piezoelectric or spontaneous polarization electric fields, our work forms the basis for developing high performance III-N optoelectronic devices

    Near-Band-Edge Photoluminescence of Wurtzite-Type AlN

    Get PDF
    Temperature-dependentphotoluminescence(PL)measurements were performed for A-plane and C-plane bulk AlN single crystals and epitaxial layers on sapphire. A strong near-band-edge (NBE) emission and deep-level luminescence were observed. At low excitations, the emission spectra are dominated by free and bound excitonic transitions and their LO-phonon replicas. At high excitations, the broadening and redshift of the NBE band is attributed to dense electron–hole plasma formation. The PL spectra differences of bulk single crystals and epilayers is explained by the electron–hole plasma expansion peculiarities

    Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression

    Get PDF
    Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.Open Access funding for this article has been provided by the Qatar National Library

    Anticancer activity of Neosetophomone B by targeting AKT/SKP2/MTH1 axis in leukemic cells

    Get PDF
    Neosetophomone B (NSP–B), a meroterpenoid fungal secondary metabolite, was investigated for its anticancer potential in leukemic cell lines (K562 and U937). NSP-B treatment of leukemic cells suppressed cell viability by triggering apoptotic cell death. Apoptosis induced by NSP-B is triggered by mitochondrial signaling and caspase activation. Additionally, NSP-B treatment of leukemic cells causes AKT's inactivation accompanied by downregulation of SKP2 oncogene and MTH1 with a concomitant increase of p21Cip1and p27Kip1. Furthermore, NSP-B causes suppression of antiapoptotic proteins, including cIAP1, cIAP2, XIAP, survivin and BCl-XL. Overall, NSP-B reduces cell viability by mitochondrial and caspase-dependent apoptosis. The inhibition of AKT and SKP2 axis could be a promising therapeutic target for leukemia treatment.This work was supported by grant funded by the Medical Research Center (MRC), Hamad Medical Corporation, Doha, Qatar (MRC-01-21-301). The authors thank Qatar National Library for open access support of this article

    Embryonic Stem Cells: New Possible Therapy for Degenerative Diseases That Affect Elderly People

    Full text link
    The capacity of embryonic stem (ES) cells for virtually unlimited self renewal and differentiation has opened up the prospect of widespread applications in biomedical research and regenerative medicine. The use of these cells would overcome the problems of donor tissue shortage and implant rejection, if the cells are made immunocompatible with the recipient. Since the derivation in 1998 of human ES cell lines from preimplantation embryos, considerable research is centered on their biology, on how differentiation can be encouraged toward particular cell lineages, and also on the means to enrich and purify derivative cell types. In addition, ES cells may be used as an in vitro system not only to study cell differentiation but also to evaluate the effects of new drugs and the identification of genes as potential therapeutic targets. This review will summarize what is known about animal and human ES cells with particular emphasis on their application in four animal models of human diseases. Present studies of mouse ES cell transplantation reveal encouraging results but also technical barriers that have to be overcome before clinical trials can be considered
    • …
    corecore