1,457 research outputs found

    Speech can produce jet-like transport relevant to asymptomatic spreading of virus

    Full text link
    Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.g. the "six-foot rule". Here we analyze flows during breathing and speaking, including phonetic features, using order-of-magnitudes estimates, numerical simulations, and laboratory experiments. We document the spatio-temporal structure of the expelled air flow. Phonetic characteristics of plosive sounds like 'P' lead to enhanced directed transport, including jet-like flows that entrain the surrounding air. We highlight three distinct temporal scaling laws for the transport distance of exhaled material including (i) transport over a short distance (<< 0.5 m) in a fraction of a second, with large angular variations due to the complexity of speech, (ii) a longer distance, approximately 1 m, where directed transport is driven by individual vortical puffs corresponding to plosive sounds, and (iii) a distance out to about 2 m, or even further, where sequential plosives in a sentence, corresponding effectively to a train of puffs, create conical, jet-like flows. The latter dictates the long-time transport in a conversation. We believe that this work will inform thinking about the role of ventilation, aerosol transport in disease transmission for humans and other animals, and yield a better understanding of linguistic aerodynamics, i.e., aerophonetics.Comment: 14 pages, 6 figure

    Effects of Dietary Katuk Leaf Extract on Growth Performance, Feeding Behavior and Water Quality of Grouper Epinephelus coioides

    Get PDF
    Abstract - Plant-derived materials are believed as potential nutrient sources to be applied in aquaculture. Although many studies to assess the benefits of plant extracts have been conducted, however effects of dietary katuk (Sauropus androgynus L. Merr.) on growth performances, feeding behavior and water quality of grouper (Epinephelus coioides) are not well known. In this study, 25 grouper juveniles weighing 11.27 ± 2.53 g were reared into 100-L tank (60 x 50 x 35 cm) and cultivated for 70 days. The fish were divided into four groups in triplicate, and were offered diet without katuk extract (control), diet supplemented with 1% katuk extract (SAA); diet supplemented with 2.5% katuk extract (SAB) and diet supplemented with 5.0% katuk extract (SAC) twice daily. Statistical analyses showed that dietary katuk extract caused a significant (P 0.05) increase in growth rate and feed intake. The efficiency of feed was also significant when fish offered diets supplemented with 1% of katuk extract which indicated by a lower feed conversion ratio. However, no statistical differences were observed on the survival rate, condition factor, viscerosomatic index and hepatosomatic index. Observation on feeding behavior found that all treated fish consumed compounded diet just after provided into their tank and there were no abnormal behavior or any healthy problems during experimental periods. It demonstrated that application of katuk extract in fish diets is acceptable and can stimulate the fish appetites. In conclusion, our studies indicated that dietary katuk (Sauropus androgynus) extract can be applied in aquaculture to stimulate the growth and improve feed utilization.Keywords: Feed conversion ratio, feed utilization, plant extract, Sauropus androgynus

    Effects of Dietary Katuk Leaf Extract on Growth Performance, Feeding Behavior and Water Quality of Grouper Epinephelus Coioides

    Get PDF
    - Plant-derived materials are believed as potential nutrient sources to be applied in aquaculture. Although many studies to assess the benefits of plant extracts have been conducted, however effects of dietary katuk (Sauropus androgynus L. Merr.) on growth performances, feeding behavior and water quality of grouper (Epinephelus coioides) are not well known. In this study, 25 grouper juveniles weighing 11.27 ± 2.53 g were reared into 100-L tank (60 x 50 x 35 cm) and cultivated for 70 days. The fish were divided into four groups in triplicate, and were offered diet without katuk extract (control), diet supplemented with 1% katuk extract (SAA); diet supplemented with 2.5% katuk extract (SAB) and diet supplemented with 5.0% katuk extract (SAC) twice daily. Statistical analyses showed that dietary katuk extract caused a significant (P < 0.05) increase in growth rate and feed intake. The efficiency of feed was also significant when fish offered diets supplemented with 1% of katuk extract which indicated by a lower feed conversion ratio. However, no statistical differences were observed on the survival rate, condition factor, viscerosomatic index and hepatosomatic index. Observation on feeding behavior found that all treated fish consumed compounded diet just after provided into their tank and there were no abnormal behavior or any healthy problems during experimental periods. It demonstrated that application of katuk extract in fish diets is acceptable and can stimulate the fish appetites. In conclusion, our studies indicated that dietary katuk (Sauropus androgynus) extract can be applied in aquaculture to stimulate the growth and improve feed utilization

    General Quantum Key Distribution in Higher Dimension

    Full text link
    We study a general quantum key distribution protocol in higher dimension. In this protocol, quantum states in arbitrary g+1g+1 (1≤g≤d1\le g\le d) out of all d+1d+1 mutually unbiased bases in a d-dimensional system can be used for the key encoding. This provides a natural generalization of the quantum key distribution in higher dimension and recovers the previously known results for g=1g=1 and dd. In our investigation, we study Eve's attack by two slightly different approaches. One is considering the optimal cloner for Eve, and the other, defined as the optimal attack, is maximizing Eve's information. We derive results for both approaches and show the deviation of the optimal cloner from the optimal attack. With our systematic investigation of the quantum key distribution protocols in higher dimension, one may balance the security gain and the implementation cost by changing the number of bases in the key encoding. As a side product, we also prove the equivalency between the optimal phase covariant quantum cloning machine and the optimal cloner for the g=d−1g=d-1 quantum key distribution

    Species-specific and needle age-related responses of photosynthesis in two Pinus species to long-term exposure to elevated CO2 concentration

    Get PDF
    There is, so far, no common conclusion about photosynthetic responses of trees to long-term exposure to elevated CO2. Photosynthesis and specific leaf area (SLA) of 1-year-old and current-year needles in Pinus koraiensis and P. sylvestriformis grown in open-top chambers were measured monthly for consecutive two growing seasons (2006, 2007) after 8-9years of CO2 enrichment in northeastern China, to better understand species-specific and needle age-related responses to elevated CO2 (500μmolmol−1CO2). The light-saturated photosynthetic rates (P Nsat) increased in both species at elevated CO2, but the stimulation magnitude varied with species and needle age. Photosynthetic acclimation to elevated CO2, in terms of reduced V cmax (maximum carboxylation rate) and J max (maximum electron transport rate), was found in P. koraiensis but not in P. sylvestriformis. The photosynthetic parameters (V cmax, J max, P Nsat) measured in different-aged needles within each species responded to elevated CO2 similarly, but elevated CO2 resulted in much pronounced variations of those parameters in current-year needles than in 1-year-old needles within each species. This result indicated that needle age affects the magnitude but not the patterns of photosynthetic responses to long-term CO2 enrichment. The present study indicated that different species associated with different physioecological properties responded to elevated CO2 differently. As global change and CO2 enrichment is more or less a gradual rather than an abrupt process, long-term global change experiments with different plant species are still needed to character and better predict the global change effects on terrestrial ecosystem

    Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer

    Get PDF
    Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer

    Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization.

    Get PDF
    Avian hepatitis E virus (HEV) causes liver diseases and multiple extrahepatic disorders in chickens. However, the mechanisms involved in avian HEV entry remain elusive. Herein, we identified the RAS-related protein 1b (Rap1b) as a potential HEV-ORF2 protein interacting candidate. Experimental infection of chickens and cells with an avian HEV isolate from China (CaHEV) led to upregulated expression and activation of Rap1b both in vivo and in vitro. By using CaHEV capsid as mimic of virion to treat cell in vitro, it appears that the interaction between the viral capsid and Rap1b promoted cell membrane recruitment of the downstream effector Rap1-interacting molecule (RIAM). In turn, RIAM further enhanced Talin-1 membrane recruitment and retention, which led to the activation of integrin α5/β1, as well as integrin-associated membrane protein kinases, including focal adhesion kinase (FAK). Meanwhile, FAK activation triggered activation of downstream signaling molecules, such as Ras-related C3 botulinum toxin substrate 1 RAC1 cell division cycle 42 (CDC42), p21-activated kinase 1 (PAK1), and LIM domain kinase 1 (LIMK1). Finally, F-actin rearrangement induced by Cofilin led to the formation of lamellipodia, filopodia, and stress fibers, contributes to plasma membrane remodeling, and might enhance CaHEV virion internalization. In conclusion, our data suggested that Rap1b activation was triggered during CaHEV infection and appeared to require interaction between CaHEV-ORF2 and Rap1b, thereby further inducing membrane recruitment of Talin-1. Membrane-bound Talin-1 then activates key Integrin-FAK-Cofilin cascades involved in modulation of actin kinetics, and finally leads to F-actin rearrangement and membrane remodeling to potentially facilitate internalization of CaHEV virions into permissive cells. IMPORTANCE Rap1b is a multifunctional protein that is responsible for cell adhesion, growth, and differentiation. The inactive form of Rap1b is phosphorylated and distributed in the cytoplasm, while active Rap1b is prenylated and loaded with GTP to the cell membrane. In this study, the activation of Rap1b was induced during the early stage of avian HEV infection under the regulation of PKA and SmgGDS. Continuously activated Rap1b recruited its effector RIAM to the membrane, thereby inducing the membrane recruitment of Talin-1 that led to the activation of membrane α5/β1 integrins. The triggering of the signaling pathway-associated Integrin α5/β1-FAK-CDC42&RAC1-PAK1-LIMK1-Cofilin culminated in F-actin polymerization and membrane remodeling that might promote avian HEV virion internalization. These findings suggested a novel mechanism that is potentially utilized by avian HEV to invade susceptible cells

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios

    The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap I. The Spectroscopic Redshift Catalog

    Full text link
    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extra-galactic) by using repeating observations with a limiting magnitude of r=18.1 magr=18.1~mag in two 20 deg220~deg^2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods and the basic performance parameters of LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with uncertainty of σz/(1+z)<0.001\sigma_{z}/(1+z)<0.001. In total, there are 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low SNR galaxies with our post-processing and visual inspection. Our analysis also indicates that up to 1/4 of the input targets for a typical extra-galactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2−W3=2.4W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in MrM_r/W2−W3W2-W3 and M∗M_*/W2−W3W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼30%\sim30\%).Comment: 19 pages, 14 figures, 2 MRT, accepted by ApJ
    • …
    corecore