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Abstract: Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma
(ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating
evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC.
In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the
biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways
(Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer
progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA
damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and
the role of the crosstalk of CSCs and their niche in the tumor progression. According to these
molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide
novel strategies for the clinical management of esophageal cancer.

Keywords: esophageal cancer; heterogeneity; cancer stem cell; plasticity; therapeutic resistance

1. Introduction

Esophageal cancer (EC) is the 7th most commonly diagnosed cancer and the 6th leading cause
of cancer-related death worldwide, with an estimated 572,000 new cases and 509,000 deaths in
2018 [1]. Esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) are
the two main histopathological subtypes of EC. EAC and ESCC vary in etiology and pathogenesis,
genomic characteristics, geographical distribution, ethnic characteristics, and therapeutic sensitivity [2].
In addition to the common risk factors such as older age, male gender, tobacco smoking, and lower
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socioeconomic status, EAC is reported to be more related to obesity, gastroesophageal reflux disease
(GERD), and Barrett’s esophagus, whereas ESCC is more associated to alcohol or hot beverages
consumption and family history of cancer [3]. EAC exhibits frequent genomic amplifications of VEGFA,
ERBB2, GATA4, GATA6, and CCNE1 as well as deletions of SMAD4, while ESCC generally presents
amplifications of CCND1, SOX2, TERT, FGFR1, MDM2, NKX2-1, and/or TP63 as well as deletions of
RB1 [4]. At the level of point mutations shows EAC frequent mutations in TP53, CDKN2A, ARID1A,
and SMAD4 while ESCC is frequently mutated in TP53, CSMD3, NOTCH1, and PIK3CA [5,6]. EAC is
more frequent in many western countries including Germany, while ESCC is the major histological
type in eastern countries especially in China and Japan [7,8]. Years of efforts have improved the 5-year
survival of EC from less than 5% in the 1960s to about 20% in recent decades [2]. Gradual improvement
of multi-disciplinary management strategies of EC contributed to the improved therapeutic effect over
time [9]. However, due to the lack of obvious symptoms at the early stage of the disease, EC patients
usually have developed regional or distant metastasis at the time of diagnosis, which makes EC still a
major global health care challenge. In addition, not all patients benefit from the multimodal therapies
including neoadjuvant chemotherapy or perioperative chemoradiation and show no tumor response
at all [10,11]. So far, the exact mechanisms underlying therapeutic resistance are often unclear.

Cancer stem cells (CSCs) are a small group of cancer cells with specific properties such as
self-renewal, differentiation potential, proliferation, heterogeneity, and therapeutic resistance [12].
Since the first identification of CSC in acute myeloid leukemia (AML) by Bonnet et al. in 1990s [13], this
particular subset of cells was reported in many solid tumors including gastrointestinal carcinoma [14,15].
The classic hierarchic CSC theory is that only CSCs have self-renewal ability and are able to differentiate
into progenitor cells that lead to differentiated tumor cells. However, recent studies have shown
the plasticity of CSCs while non-CSCs are capable of gaining stemness due to the changes in tumor
microenvironment (TME) or the stimulations by cytotoxic treatments [16,17]. It is suggested that
CSCs may be responsible for therapeutic resistance and are the major cellular source for tumor
recurrence [12,17,18]. According to the CSCs theory, traditional cytotoxic treatments like chemotherapy
and radiotherapy could eliminate rapidly proliferating non-CSC cells rather than the relatively quiescent
CSCs and may stimulate non-CSCs to undergo stem-phenotypic transitions [16–18]. For EC patients,
no significant survival benefit of an adjuvant chemotherapy or radiotherapy has been shown [19–21].
It has been reported that nearly 70% of patients showed limited or no response to current neoadjuvant
chemotherapy and still 30–40% of patients did not achieve a satisfactory response after neoadjuvant
chemoradiotherapy [10,22,23]. Moreover, long-term follow-up revealed that about 40–50% of patients
developed local or distant recurrence even after radical multidisciplinary treatment [24–26]. In light
of this relatively poor susceptibility of EC to chemo- or radiotherapy, it appears highly promising to
understand the role of CSCs in EC and to explore therapeutic strategies aiming to eradicate CSCs.

In this review, we focus on the latest research findings on CSCs in EC from PubMed based on
the medical subject headings of ‘esophageal cancer’, ‘esophageal adenocarcinoma’ or ‘esophageal
squamous cell carcinoma’, ‘cancer stem cell’, ‘heterogeneity’ or ‘single cell’, ‘signaling pathways’,
‘chemotherapy’, ‘radiotherapy’ or ‘therapeutic resistance’, ‘prognosis’ or ‘survival’. Only peer reviewed
articles written in English were included. We thoroughly discuss isolation of CSCs, their biological
characteristics, TME crosstalk, therapeutic resistance, and potential novel perspectives of CSCs
eradication in EC.

2. Isolation of Esophageal Cancer Stem Cells

The introduction of the “tumor stem cell” concept bears interesting opportunities to explore the
pathogenesis of malignant tumors. Reliable and robust protocols for esophageal cancer stem cells
(ECSCs) isolation and enrichment is a pivotal task to harmonize ECSC studies. In recent years, many
experts have explored several separation methods of ECSCs, mainly belonging to the following two
types of strategies: ECSC biomarker based and ECSC biomarker-free based.
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2.1. ECSC Isolation—Biomarker Based

Using the specific surface or intracellular markers detectable by fluorescence-activated cell sorting
(FACS) or antibodies conjugated to magnetic beads for screening of CSC is considered as one of the
most authoritative methods (Figure 1).

Figure 1. A schematic of various esophageal cancer stem cell markers and the overview of
the progression from normal squamous epithelium to dysplastic cell and finally developing into
adenocarcinoma. Cell surface markers CD44, CD24, CD90, CD271, CD133, ABCG2, ITGA7, ICAM-1
and PDPN are used as single markers while CD44 and CD133 can be used in combination with other
markers, including CD24, CD133 and CXCR4 to identify cancer stem cells (CSCs). Others are the
transcription factors BMI1, NANOG, SOX2, OCT-4, GLI-1, SALL4, and Ep-CAM are implicated to
enrich the CSCs. Various cell types have been proposed to give rise to metaplasia (the replacement of
esophageal squamous epithelium by Barrett’s columnar epithelium in response to esophageal injury)
which can progress to esophageal adenocarcinoma. Esophageal cancer cells are heterogeneous and
include cancer stem cell populations. Chemotherapy and/or radiotherapy kill differentiated cancer cells
but may fail to kill CSCs, which arise from stem cells, progenitor cells, or differentiated cells. Migrating
cancer stem cells are considered to have a crucial role in initiating cancer metastasis.

CD44 and CD133 are multifunctional cell surface antigens that have a role in tumor proliferation,
migration, invasion, and angiogenesis in several aspects of cancer cell phenotypes and have been
extensively studied as single and combined CSC markers [27,28]. Single marker CD44 is suggested
to be a prognostic marker for EAC and ESCC [29,30]. In particular, some studies have proposed
CD44 as a CSC marker in ESCC [29,31]. Functional characteristics were also found for CD133 [32–34],
CD271(p75NTR) [35–37], LgR5 [38–40], CD90 [41,42], ALDH1 [43–45], ABCG2 [33,46,47], ICAM-1[48]
and ITGA7 [49]. Besides, CD44 and CD133 can be used in combination with CD24 (CD44+/CD24−) [50],
CD133 (CD44+/CD133+)[51] and CXCR4 (CD133+/CXCR4+) [52] to identify esophageal CSCs (Table 1).
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Table 1. Cancer stem cell markers for prognosis of esophageal cancer.

Markers Cancer Type EAC/ESCC Results Marker for Diagnosis or Prognosis Reference

Single marker

CD44 EAC
ESCC

Cell surface protein: contributes to tumor invasion and
regulates EMT

High CD44 expression correlates to positive
lymph node ratio and lymph vascular invasion [29–31]

ABCG2 ESCC ATP-binding cassette transporter (membrane transporter) is
associated with the drug resistance and metastasis

The presence of ABCG2-positive cells was
associated with poor survival independent of
primary tumor size and positive lymph node

metastasis

[33,46,47]

ALDH1 EAC
ESCC

Intracellular enzyme oxidizing aldehydes: ALDH1+ cancer
cells possess highly invasive and metastatic capabilities with
EMT phenotype and are associated with therapy resistances

Positive ALDH1 staining was relevant to higher
clinical stage and shorter survival time [43–45]

CD133 ESCC Cell surface protein: promotes tumor initiation and
self-renewal capacity as well as chemoresistance.

The presence of CD133+ cancer cells was
associated with tumor cell differentiation [32–34]

CD271 ESCC
Cell surface protein: CD271+ cancer cells possess higher

self-renewal activity and are associated with
therapy-resistance and lymphnode metastasis

Ep-CAM+ CD271(p75NTR)+ tumor cells in
peripheral blood correlate with clinically

diagnosed metastasis and venous invasion
[35–37]

LgR5 EAC Cell surface protein: promotes proliferation, migration and
invasion ability High LgR5 was associated with worse survival [38–40]

CD90 ESCC
Cell surface protein: CD90+ cells possess higher

self-renewal activity and metastatic potential, and are more
resistant to chemotherapy

Higher CD90 expression exhibit more local
invasion and distant metastasis, indicating a

poor prognosis
[41,42]

ITGA7 ESCC
Cell surface receptor: ITGA7 contributes to tumor

innitiation and drug resistance, it promotes metastasis via
inducing EMT together with an anti-apoptosis function.

More ITGA7+ cells in ESCC tissues predict a
worse prognosis [49]

ICAM1 ESCC
Intercellular adhesion molecule1: promotes cancer cell

migration, invasion, EMT, sphere formation, tumorigenesis
and drug resistance

[48]

SOX2 ESCC Transcription factor: promotes cancer cells migration and
invasion as well as chemoresistance to cisplatin

Controversial results exist regarding the
prognostic value of SOX2 because of opposite

conclusion among studies
[53–57]

NANOG ESCC Transcriptional regulator: regulates cancer cells
proliferation and drug resistance [58–60]
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Table 1. Cont.

Markers Cancer Type EAC/ESCC Results Marker for Diagnosis or Prognosis Reference

BMI-1 ESCC Transcriptional regulator: regulates radiosensitivity of
tumor cells and inbitits cell growth and invasion

Overexpression of BMI-1 is associated with
progression and invasion of EC [61–64]

OCT-4 ESCC
Transcriptional regulator: promotes cell cycle progression
and accelerates proliferation and invasion of esophageal

cancer cells

Overexpression of OCT-4 is significantly
associated with higher histological grade and

poorer survival
[54,62,65,66]

Ep-CAM ESCC Transmembrane glycoprotein: Ep-CAM contributes to cell
proliferation and tumorigenesis

Expression level of Ep-CAM inversely correlates
with degree of differentiation [67–69]

Gli-1 EAC
ESCC

Transcription factor: promotes cell proliferation and is
associated with chemoradiation resistance

Gli-1 is positively associated with distant
metastasis, indicates poor outcome [70–72]

SALL4 ESCC
Transcription factor: promotes cell proliferation, migration

and invasion as well as chemoresistance to cisplatin,
contributes to tumorigenesis in vivo

Overexpression of SALL4 was found in a
majority of ESCC tissues and correlates with

poor survival
[55,73]

Podoplanin
(PDPN) ESCC Transmembrane protein: accelerates the proliferation and

regulates tumor EMT

PDPN expression at the edge of cancer cell nest
associates with tumor invasion and poor

prognosis
[74–77]

Combined markers

CD44+/CD24− EAC and ESCC CD44+/CD24− EC cells exert a higher proliferation rate and
mediate therapy resistance [50]

CD44+/CD133+ ESCC
Strong expression of CD44 and CD133 indicates
a poor prognosis regardless of chemotherapy in

ESCC
[51]

CD133+/CXCR4+ ESCC CD133+CXCR4+cells regulate tumor invasion and show
high proliferative capacity

Concomitant CD133-CXCR4 expression heralds
impaired disease-free survival and overall

survival
[52]
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Other read-outs for cancer stemness associated genes such as BMI-1 [61], Nanog [58–60],
Sox2 [53–57], Oct-4 [54,62,65,66], SALL4 [55,73], GLI-1 [70–72], Ep-CAM [67–69], and Podoplanin
(PDPN) [74–77] are involved in regulating CSC populations, leading to enhanced proliferation,
invasiveness, therapy resistance, and metastatic capacity. They could potentially act as prognostic CSC
markers in esophageal cancer.

2.2. ECSC Isolation—Biomarker-Free

In addition to the strategies mentioned above, there are several common methods for CSC isolation
independent of specific markers. Firstly, side population (SP) cells are a subpopulation of cells that can
exclude dyes such as Hoechst 33342 and therefore can be identified through FACS analysis. SP cells
appear to be enriched with stem cells and share many biological characteristics with both normal and
cancer stem cells [78], thus, they were regarded as stem cell-like cells in numerous types of cancers
including leukemia [79], multiple myeloma [80], breast cancer [81]. Several studies have isolated stem
cell-like subpopulations from esophageal cancer cells using side population strategy. For example,
Huang et al. [62] isolated and identified SP cells in human esophageal cancer cell lines, the cells with
the strongest dye efflux activity (SP cells) in EC9706 had higher clone formation efficiency than non-SP
cells. Zhang et al. [82] demonstrated that radioresistant cell lines contained higher fractions of SP
cells than parent cell lines of EC. In addition, Zhang et al. [83] also reported increased SP cells in 3D
tumor spheres as compared to the 2D adherent cultured cells. Our previous study [84] detected SP
cells using Hoechst 33342 staining in five different esophageal cancer cell lines and provided evidence
that (1) the proportion of SP cells was variable in esophageal cancer cell lines, (2) SP cells exhibited
stem cell properties and were associated with chemotherapy resistance, and (3) long-term exposure
to chemotherapy drugs could enrich SP cells with EMT characteristics, which might be a source for
recurrence and distant metastases. Secondly, serum-free suspension culture is widely accepted as
an effective method for enrichment of CSCs. Many cancer types develop microsphere cells after
serum-free suspension culture and exhibit stem cell-like characteristics [83,85–87]. The EAC cell line
OE19 built tumor spheres, when cultured in serum-free medium, with increased expression levels
of CD44 and they were more resistant to radiotherapy as the parent OE19 clone [88]. Consistently,
in ESCC cell lines, sphere cells isolated through the same method showed higher radio-resistance
than their parental cells [89]. Spheres from the ESCC line ECA109, cultured in serum-free medium,
exhibited higher proliferation rates and tumorigenicity in vivo [90]. However, the well-accepted sphere
formation assay may not be always the most effective method for CSC enrichment, and the same is
true for analyses of acquired therapy resistance [91]. Thirdly, radiation resistance has been identified
as a major characteristic of CSCs in vitro [92,93] and accumulating evidence indicates that CSCs are
mediating resistance to radiation therapy in cancer patients [94]. Thus, radio-resistance can be used
to isolate CSCs. Using an in vitro isogenic model of radioresistant EAC, Lynam-Lennon et al. [95]
demonstrated that radioresistant EAC cells have enhanced tumorigenicity in vivo and increased
expression of CSC-associated markers as well as enhanced holo-clone forming ability. In two other
studies, fractionated irradiation was applied to acquire radio-resistant esophageal cancer cells [82,96].
Both studies demonstrated that radioresistant EAC and ESCC cells showed stem cell properties both
in vitro and in vivo. Lastly, attached-cell Aldefluor method (ACAM) is used to identify stem-like
cells in ESCC cell lines (KY-5, KY-10, TE-1, TE-8, YES-1, YES-2), where ACAM positive cells showed
significantly higher ALDH activity and higher CD44 expression than the parental cells, which may
represent a strategy to identify ECSCs [97].

Some studies defined tumor transplantation assays through serial tumor transplantation in the
animal models as standard to characterize CSC subpopulations [27,98]. Limiting dilution analysis of
tumor transplantation assays demonstrated that ESCC cells with higher CD44 expression showed
a shorter latency for visible tumor initiation after subcutaneous tumor injections into NOD/SCID
mice with low doses [29], which was especially observed in EC cells with higher expression of
ALDH1 and ITGA7 [44,49]. Similarly, subcutaneous injection of OE19 SP cells as well as tumor
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spheres generated from Eca109 cells to nude mice showed higher tumorigenicity than their parental
cells [84,90]. In addition to transplantation assays, lineage tracing is a powerful technique that allows
researchers to follow the fate of individual cells and their progeny and was applied as an effective
method to study stem cells [99]. Using genetic in vivo lineage tracing, Mariko et al. showed that
LGR5+ tumor cells have self-renewal and differentiation capacity and functionally behave as CSCs
in colon cancer [100]. As to esophagus, Jiang M et al. found p63+KRT5+KRT7+ basal cells in the
upper gastrointestinal tract of mice serve as a source of progenitors for the transitional epithelium
that can reproduce Barrett’s metaplasia [101]. Giroux et al. found that a long-lived progenitor cell
population with expression of Krt15 is able to self-renew, proliferate, and generate differentiated cells
murine esophageal epithelium [102]. Although there is still limited consensus on the identification of
ECSCs, increasing amounts of studies are trying to focus on the ECSCs for both pre-clinical and clinical
applications. Certainly, further investigations are still necessary to find more valid, reliable, and robust
methods to identify CSCs in esophageal cancer.

2.3. Heterogeneity and Single-Cell Analysis of ECSCs

Tumors consist of genetically and epigenetically various cell subpopulations, which is referred to
as intratumor heterogeneity. The tumor clones are not equally sensitive to current treatments and are
considered a major reason for cancer treatment failure [103,104]. The CSC model is one of the most
popular theories to explain intratumor heterogeneity [104]. Recent development of single cell analysis
and next generation sequencing technologies allows dissection of intratumor genetic and epigenetic
heterogeneity at single-cell resolution, providing new insights into the roles of CSCs in tumor initiation
and intratumor heterogeneity [105].

Single-cell RNA sequencing (scRNA-seq) of primary ESCC and EAC tissues successfully
distinguished tumor cells from non-tumor cells and showed intrinsic molecular heterogeneity of
EAC and ESCC tumors [106]. Bulk RNA-seq and scRNA-seq of paclitaxel-resistant cells and parental
cells revealed that molecular mechanisms of intrinsic paclitaxel resistance were distinct from those
of acquired resistance at single-cell level. This may open new options to target paclitaxel resistance
in ESCC [107]. The same methodology was also applied to analyze transcriptomic dynamics of
ESCC cells with acquired radio-resistance throughout exposition of ESCC cells to different doses of
irradiations in vitro. The results showed that a cellular heterogeneity with distinct subpopulations
existed in irradiated ESCC cells, and dynamic gene regulations were found during the acquisition
of radiation resistance [108,109]. Besides, a comparison of the transcriptomic profiles of EAC and
ESCC cells with high and low stemness at single-cell level revealed a stemness-associated gene
expression signature in ESCC and EAC cells. EAC CSCs highly expressed cell cycle-associated genes,
while genes with regard to DNA replication and DNA damage repair were mainly increased in ESCC
CSCs [110]. It was reported that beside intratumor heterogeneity, an intra-CSC heterogeneity was found
in hepatocellular carcinoma, where different CSC subpopulations presented phenotypes, functions,
and transcriptomic heterogeneity at a single-cell level [111]. In addition to single-cell transcriptomic
analysis, single-molecule epigenomic technologies now provide an opportunity to study epigenetic
regulations and dynamics such as DNA methylation, chromatin accessibility, and histone modifications
at unprecedented resolution [112]. Moreover, although high-throughput single-cell methods have not
yet arrived in proteomics, proteomics researchers hold an optimistic view that new technologies and
strategies will soon be established to successfully tally proteins at single-cell level [113]. Therefore,
given the encouraging perspective of single-cell analyses in cancer research, further studies focusing
on intra-CSC heterogeneity in EC cells using single-cell analyses are needed and may provide new
insights in targeting ECSCs.

3. ECSC Signaling Pathways

A regulatory network consisting of Wnt/β-catenin, transforming growth factor-β (TGF-β)/Smad,
Notch, Hedgehog, Hippo, JAK/STAT3, and PI3K/AKT/c-MYC signaling pathways controls CSC
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properties [114–120]. These important signaling pathways regulate self-renewal, proliferation, and
differentiation capacity of cancer stem cells. Dysregulation of these pathways may also contribute to
the undesirable progression of esophageal cancer.

Overexpression of WNT10A plays an important role in ESCC through activation of the
Wnt/β-catenin signaling pathway, inducing an increase of the CD44+/CD24− population, which
can promote ESCC migration and invasion [121]. In addition, hypoxia-inducible-factor 1α (HIF-1α)
has been revealed to be essential for regulating the stemness of ESCC by activating the Wnt/β-catenin
pathway. Stable knockdown of HIF-1α in ESCC cells inhibited proliferation, migration, and tumor
growth in vivo [122]. MicroRNA-455-3p was reported to play key roles in promoting chemoresistance
in vitro and tumorigenesis of ESCC cells in vivo. Treatment with a miR-455-3p antagomir could
sensitize ESCC cells to cisplatin and reduce the subpopulations of CD90+ and CD271+ (tumor-initiating
cells) T-ICs via inactivation of Wnt/β-catenin and TGF-β signaling pathways [123]. Interestingly,
SB525334, a TGF-β1 inhibitor, can significantly inhibit the migration and invasion of sphere-forming
stem-like cells of KYSE70 and TE1, which display an increased self-renewal capacity, chemoresistance
in vitro, and tumorigenesis in vivo [124].

The Notch signaling pathway plays an important role in regulating cell differentiation and
proliferation during embryogenesis and normal tissue homeostasis, which have also been implicated in
tumorigenesis including development of esophageal cancer [125]. Mastermind like1 (MAML1) is a key
transcription coactivator of this pathway, which could promote the aggressiveness of ESCC through
an upregulation of the EMT marker TWIST1 and increase the therapy resistance of ESCC stem cells,
respectively [126,127]. In addition, Notch signaling is frequently activated in poorly differentiated
tumors and drives a CSC phenotype. By using patient derived xenograft models and primary cell
lines, several studies have demonstrated that Notch signaling is critical for CSC capacity and able to
drive stemness and tumorigenicity of EAC [128].

Glioma-associated oncogene homolog 1 (Gli-1) is a key mediator of the Hedgehog (Hh) pathway.
As a transcription factor of the Hh pathway, Gli-1 mediates therapy resistance in a study with 5-FU
or radiation resistant EAC cell lines (SKGT4 (SK4) and Flo-1) [70]. And Gli-1 nuclear expression was
identified as a strong and independent predictor of poor response to chemoradiation, early relapse
and poor prognosis in ESCC after chemoradiotherapy (CRT) [70,129]. Gli-1 expression was observed
in 28.3% of ESCC and showed strong correlation with the stemness genes SOX9 and CD44, which
were associated to poor prognosis in ESCC patients [72]. Furthermore, Isohata et al. reported an
existing crosstalk between Hh pathways and EMT pathways in ESCC since EMT regulator SIP1 is a
downstream target of Gli-1 [130], indicating potential Hh pathway regulation on EMT state of ESCC.
Furthermore, Patched1 (PTCH1), another key mediator of the Hedgehog (Hh) pathway, together
with Sonic Hedgehog (SHH), one of mammalian HH ligands, were significantly enriched in EC
resection tissue from the patients with minimal-residual disease (MRD) after receiving neoadjuvant
chemoradiation (nCRT), and PTCH1 is upregulated in CD44+/CD24− CSC population in both EAC
(OE33) and ESCC (OE21) cell lines [131]. This study demonstrated that the HH pathway might regulate
CD44+/CD24− CSC populations and increase the cancer stemness and therapy resistance.

The Hippo pathway and its downstream effector Yes-associated protein (YAP) have been proposed
to be regulators of organ size, cell proliferation, and stem cell properties in a variety of cancers [132–135].
Recent studies have demonstrated that genetic or pharmacological inhibition of YAP could repress
CSC-like properties in vitro and attenuate tumor growth and CSC marker expression in ESCC xenograft
models by directly activating its downstream target SOX9 [136]. Consistently, another study has shown
that YAP1 driven SOX9 expression was a major determinant of CSC properties in both ESCC and
EAC [137]. Moreover, YAP1 could confer therapy resistance and increase cell proliferation in EC cells
by upregulating epidermal growth factor receptor (EGFR) [138].

The JAK/STAT3 signaling pathway plays a prominent role in mediating tumor cell proliferation,
survival, invasion, and metastasis in different types of cancer [117]. Genistein, an angiogenesis inhibitor
belonging to the category of isoflavones, suppressed the JAK1/2-STAT3 pathway by decreasing
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EGFR expression, significantly inhibiting esophageal cell proliferation in vitro, and tumorigenesis
in vivo [139]. In addition, further research demonstrated that the suppression of the JAK/STAT3
pathway could inhibit ESCC cell proliferation in vitro [140,141].

Additionally, the PI3K/AKT/c-MYC signaling axis promotes cancer stem-like feature acquisition in
ESCC cell lines [120]. The study found that the cell subset responsive to a Sox2 regulatory region (SRR2)
reporter (RR cells) isolated from these ESCC cell lines contained significantly higher proportions of
CD44-high and ALDH1A1-high cells. The authors demonstrated that the PI3K-AKT pathway regulates
the RR phenotype and promotes its CSC-like features by upregulating c-MYC [120]. It should be noted
that PI3K activation was observed to be related to human papillomavirus (HPV) oncogene repression
in HPV-positive cervical cancer cells, contributing to therapy resistance, immune evasion, and tumor
recurrence [142]. Given the clinical and experimental evidence showing a cross-talk between HPV
infection status and CSC functions in oropharyngeal cancer as well as head and neck carcinomas, virus
infection and related inflammation response may as well participate in the regulation of CSCs [143,144].
However, there is still limited evidence linking HPV or other viral infections to CSC in esophageal
cancer. This aspect may deserve further investigation.

4. Therapeutic Resistance and CSC in EC

Primary and secondary resistance are major obstacles of conventional therapeutic strategies for
esophageal cancer. CSCs are frequently resistant to established therapies and may be the primary cellular
source underlying resistance. Several potential mechanisms mediating CSCs-induced therapeutic
resistance have been reported, including relative quiescent status with enhanced DNA repair capacity,
elevated drug export efficiency, improved protection against reactive oxygen species (ROS), and the
protective CSC niche in the TME [145–148].

It is well-established that normal stem cells (SCs) present a reversible quiescent state that is
insensitive to cytotoxic treatments, which mainly interfere with the mitotic system of proliferating
cells [149–151]. Adult stem cells have a very robust DNA damage response (DDR) system to maintain
genomic integrity and protect cellular homeostasis in response to stress [152,153]. These features
also exist in CSCs [154,155]. In EC, CSCs isolated from the ESCC cell line EC9706 were resistant to
DNA damage through impaired induction of p53 and declined G1 checkpoint arrest, and presented
a slow-cycling status with a lower level of phosphorylated Stat3, c-Myc, and a higher level of p27
when compared with the non-CSCs [156]. Single cell analysis revealed that overexpression of cell
cycle-associated genes, DNA replication modulating genes, as well as DNA damage repair regulating
genes were significantly correlated with stem cell-like properties in both EAC and ESCC [110]. Besides,
CD133+ ESCC cells are strongly resistant to conventional cytotoxic drugs [34]. It was reported that
CD133+ glioma stem cells are resistant to radiotherapy through the activation of the DNA damage
checkpoint with enhanced DNA damage repair response [157]. A similar mechanism may mediate
therapy resistance of CD133+ cells in ESCC as well.

Multidrug resistance (MDR) describes the phenomenon that cancer cells can be cross-resistant to
several structurally and functionally different drugs [158]. A major mechanism of MDR is an altered
cell membrane transport system that can pump cytotoxic drugs out of the cancer cells before irreversible
DNA damage occurs. For instance, overexpression of the ATP-binding cassette (ABC) transporter
family is well established in drug resistant cells [159,160]. ABCB1 and ABCG2 are widely-studied
members of the ABC family and are related to CSC induced chemoresistance in many solid tumors
such as breast, colon, and lung cancer [161,162]. ABCB1 and ABCG2 were also found to be remarkably
upregulated in ESCC CSCs with an enhanced resistance to cisplatin as compared to non-CSCs [83]. High
expression of ABCG2 correlates with poor survival in ESCC patients [33,47]. ESCC cells with ABCG2
overexpression showed cross-resistance to both irinotecan and 5-FU through the activation of the AhR
pathways, which could be reversed by targeting AhR to further inhibit ABCG2 expression [163,164]. To
reverse MDR in cancer cells, modulating ROS may be a viable strategy. It has been suggested that MDR
cancer cells are more susceptible to alterations in ROS levels and can be sensitized to cytotoxic drugs
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after improving the ROS level by targeting relative modulators [165,166]. However, ROS levels were
found to be decreased in many types of CSCs [167]. Among the potential mechanisms, the aldehyde
dehydrogenases (ALDHs) play an important role in reducing ROS level within CSCs. ALDHs are
a group of enzymes that catalyze the oxidation of aldehydes into less toxic carboxylic acids, which
are commonly regarded as detoxifying enzymes [168]. As the best-studied ALDH isoform, ALDH1
was reported to decrease ROS levels through the activation of antioxidant systems [169]. Detecting
of ALDH1 activity was also widely used as a classic assay to identify CSCs in a variety of cancers
including EC [170]. ALDH1+ cells in ESCC present typical stem cell-like properties as well as higher
invasive and metastatic capabilities as compared to ALDH1− cells [44,45]. Clinical data suggested that
EC patients with high expression of ALDH1 were more resistant to clinical interventions and had a
poor long-term prognosis [44]. Taken together, the MDR of ECSCs may be attributed to the enhanced
membrane pump-out ability and the decreased ROC level within tumor cells.

Normal stem cells reside in a “stem cell niche”, which refers to a dynamic microenvironment
that balances the stem cell activity to govern tissue homeostasis under diverse conditions [171]. A
similar concept “cancer stem cell niche” states that CSCs might localize in a protective niche within
the TME, which is critical for maintaining the biological function of CSC [145,172]. As a major
component of the TME, cancer-associated fibroblasts (CAFs) play a pivotal role in forming the CSC
niche, promoting tumorigenesis and inducing therapeutic resistance [173]. ESCC cells co-cultured
with CAFs showed significantly altered gene expression in the TME including matricellular proteins,
growth factors, cytokines, chemokines, EMT-related genes, and components of inflammatory signaling
pathways [174]. The cross-talk between EC cells and CAFs might be mediated by IL-6 through STAT3
and ERK1/2 signaling pathways and showed suppressed tumorigenesis both, in ESCC and EAC [174].
CAFs in ESCC were also reported to cause radio-resistance by regulating DNA damage response
though promoting long noncoding RNA (lncRNA) DNM3OS expression via PDGFβ/PDGFRβ/FOXO1
signaling pathway [175]. EMT is another key process that may interact with CSC plasticity and TME.
Studies have proved that stromal constituents of the TME can activate EMT through secreting various
chemokines, cytokines, and activating several signaling pathways such as TGFβ, WNTs, NOTCH, and
Hedgehog to maintain cancer stemness and promote tumor progression and metastasis in several types
of cancers [176], including EC [177]. EC cells that underwent EMT presented an enhanced radiation
resistance with improved DNA repair ability [178,179]. CSCs may also in turn modify their niche
through activating EMT to reform adjacent stromal cells into a relatively undifferentiated status, which
then reinforce the CSC plasticity as well as maintain the protective niche [147]. Some studies have
reported that CSCs could usually be located in a hypoxic region in the TME [180], hypoxic condition of
the CSC niche can also induce EMT as well as decrease inner ROS levels, which can further maintain
cancer stemness and contribute to therapeutic resistance [181,182].

Up to date, many efforts are dedicated to exploring the underlying mechanisms of CSCs-induced
therapeutic resistance and provide insights in cancer treatment. Among them, targeting CSCs to
reverse treatment failure is one of the most promising strategies that may bring long-term benefits to
cancer patients.

5. Therapeutic Strategies Targeting CSC in EC

The unsatisfying results of conventional chemo- and radio-therapeutic strategies highlight the
clinical need of more effective therapeutic compounds, especially those which could prevent tumor
recurrence. Among all the potential targets, CSCs together with the niche/TME have attracted attention
as targets for pre-clinical and clinical approaches.

As discussed above, CSCs carrying variable surface markers allow the differentiation of highly
malignant CSCs from normal cancer cells, many strategies based on surficial molecules and downstream
compounds have also been developed to optimize treatment response. For instance, in 2016 a phase I
study targeting CD44, a cancer cell progenitor marker of EAC, achieved a limited clinical benefit among
AML patients. However, it suggested a promising combination therapy with other cytotoxic agents [183].
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BMS-833923 is a potent and specific inhibitor of SMO in the Hh pathway [184], which is currently tested
in a phase I trial (NCT00909402: completed, but results are not published yet) evaluating inhibition
of SMO as a first-line therapy for unresectable metastatic EC patients in combination with Cisplatin
and Capecitabine. Additionally, Taladegib (LY-2940680) an alternative small molecule interfering
with the Hh cascade through binding to the SMO receptor is currently evaluated (NCT02530437:
active, not recruiting) [185]. The amplification or drug induced overexpression of EGFR has long
been considered as a marker for resistance and tumor progression [186]. Targeted therapy based on
anti-EGFR monoclonal antibodies (mAb) e.g., nimotuzumab, plus irinotecan, a common medication
for gastric cancer treatment, showed potential improvement in EGFR positive patients of advanced
gastric cancer [187].

It is now widely accepted that the oncogenesis and tumor heterogeneity are not exclusively
dependent on aberrations or mutations of tumor cells, but also accompanied by the dynamic changes
of microenvironmental compositions as well as the state and properties of surrounding stromal
cells [188,189]. Apart from malignant tumor cells, the highly diverse cell types in the TME, mainly
including CAFs, immune cells, vascular endothelial cells, and mesenchymal stem cells [190–192], are
genetically stable, thus could be utilized as multiple targets in cancer therapy. A series of efforts has
been undertaken to investigate the prominent role of the CXCL12/CXCR4 axis in cancer progression of
different cancer entities including both histologic subtypes of EC [193–195]. Combination therapies with
the CXCR4 antagonist AMD3100 counteracted the resistance of pancreatic cancer cells to gemcitabine
via Fak, ERK, and Akt pathways [196]. Furthermore, co-administration of AMD3100 and anti-PD-L1
antibody diminished stroma–cancer cell interaction together with an improved immune response [197].
Gockel et al. validated CXCR4 expression in 94.1% of resectable ESCC patients (54.9% weak expression
vs. 45.1% strong expression) and 89.1% resectable EAC patients (71.7% weak expression vs. 29.3%
strong expression), strong CXCR4 expression was supposed to be relevant to poor prognosis in both
subtypes [198]. A reduced cell proliferation rate was observed in the EAC cell line OE19 treated with
AMD3100, smaller primary tumor size, and fewer metastatic spread to lung, liver, and lymph node
were further confirmed in OE19 injected mice under AMD3100 treatment [199]. Another approach
targeting the TME arose from the observation of overexpressed VEGF/VEGF receptor system which
initiates pathological angiogenesis in tumor niches. By blocking VEGFR-2 with ramucirumab, Fuchs et
al. validated a significantly prolonged overall survival in a phase 3 trial among advanced gastric or
gastro-esophageal junction adenocarcinoma (REGARD) patients [200]. Since rising evidence over past
years supports the hypothesis that stem cells in gastroesophageal junction (GEJ) invoke very likely the
occurrence of Barrett’s esophagus and EAC [201], antagonising VEGFR-2 could also be feasible in EAC.

Over the past decades, immunotherapy has been confirmed as an additional approach able
to control different types of cancer and sometimes effective in patients resistant to conventional
therapies [185]. Immune checkpoint receptors such as PD-1 and CTLA-4 are favorable drug targets as
they release suppressive signals upon the activation by tumor cells. Up to 40% of GEJ adenocarcinoma
cases express PD-L1 [202,203]. Blockade of PD-1 with the mAb Nivolumab revealed encouraging
results with a survival benefit in advanced gastric or gastro-esophageal junction adenocarcinoma
patients’ refractory to at least two chemotherapy regimens (ONO-4538-12, ATTRACTION-2) in a recent
phase III trial in Asian patients [204]. Other novel immunological strategies involving genetically
engineered immune cells (e.g., CAR T) could also elevate anti-CSC efficiency. Genetic knockdown of
PD-1 alone, or in combination with chimeric antigen receptor (CAR) T cells, which carries a predefined
affinity to a given tumor antigen, could significantly enhance immune reaction against a desired
tumor type. Shannon et al. reported the persistent ability of CAR T cell CTL019 in monitoring ALL
relapse [205]. However, in EAC patients one related clinical trial is still ongoing (NCT03706326:
recruiting) and the result of another phase I study remains to be published (NCT03081715: completed).
Similar to T cells, cytotoxic NK cells of the intrinsic immune system can induce apoptosis of viral
infected or transformed autologous cells e.g., cancer cells via pore-forming and release of granzyme
B [206]. CSCs are confirmed to be a small subset of cells with sparse MHC class I molecules (MHC-I),
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thus insinuates their blunt reaction to CD8+ T cells [207], which in term fails to silence NK cells as
NK cell tolerance to self-tissue is maintained in the presence of MHC-I [208]. Additional studies have
reported susceptibility of CSCs to allogeneic NK cells in diverse solid tumor types in pre-clinical
models, such as colorectal cancer [209] and glioblastoma [210]. In another pre-clinical model, increased
expression of the NKG2D ligands ULBP1, ULBP2, and MICA sensitized CD44+/CD24− breast CSCs
to killing by previously activated NK cells by IL-2 and IL-15 [211]. Such investigations have ignited
the passion of EC researchers to transform it into the clinical field (NCT02843581: completed) and the
result is awaited by the community. The susceptibility of CSCs to cancer immunotherapy is poorly
investigated and may represent an important mechanism underlying long-term benefit from these
novel therapies.

According to the tumor cell subclone functional diversity model proposed by Kreso et al.,
conventional radio- and chemotherapy targeting dividing cancer cells collapsed to diminish dormant
(stem cell-like) cells within tumor entities could account for the post-treatment repopulation of tumor
cells [212]. The same group also successfully observed that the previously dormant cell lineage—a
minor bunch among tumor initiating cells (T-ICs), survived from chemotherapy and contributed to
tumor regrowth in colorectal cancer [213]. In glioblastoma, tumor regrowth was significantly halted
after the ablation of a subset of stem cell like endogenous tumor cells [214]. Both studies favorably
provided direct evidence of the tumor reproducing capacity of T-ICs. Thus, it is feasible to hitch CSCs
to EC recurrence albeit similar investigations are still scarce, such mechanism reversely strengthens the
weightiness of CSC targeting in EC administration with individualized therapy.

Eventually, emphasizing the importance of estimating prospective therapy response in precision
medicine is warranted. For instance, a better OS in recurrent glioblastoma patients than previous
data was achieved by using a systemic assay which firstly stratifies the cell kill rate to find an efficient
one among different drug combinations targeting both CSCs and non-CSC cells [215]. This frontier
attempt provided an auspicious way for the future treatment of recurrent EC patients or those with
poor estimated prognosis.

6. Conclusions and Future Perspectives

The focus on ECSCs opens a new vision for translational research of EC and may result in further
understanding of key mechanisms of EC etiology, progression, recurrence, and therapy resistance. As
we discussed, CSCs could be isolated from esophageal tumors using either ECSC biomarker based or
ECSC biomarker-free methods. A combined application of multiple markers or multiple methods to
screen for CSCs in future studies may help to overcome the limitations derived from the heterogeneity
of individual tumors. Furthermore, we emphasize the importance and advantages of integration of
single cell analysis in esophageal cancer stem cell studies. This new method will help to understand
both intertumor and intratumor heterogeneity of CSCs in EC and the clonal architecture of esophageal
cancer for both adeno- and squamous cell carcinomas. The crosstalk between ECSCs and their niche
(TME) not only plays a pivotal role during oncogenesis but also has profound effects on modulating
therapeutic efficacy. Therefore, future strategies of combined treatments, that target CSCs and the TME
may result in successful implementation of individualized therapy of EC patients.
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Abbreviations

ABC ATP-binding cassette
ACAM Attached-cell Aldefluor method
ALDHs Aldehyde dehydrogenases
AML Acute myeloid leukemia
BE Barrett’s esophagus
CAFs Cancer-associated fibroblasts
CAR Chimeric antigen receptor
CSCs Cancer stem cells
CRT Chemoradiotherapy
DDR DNA damage response
EAC Esophageal adenocarcinoma
EC Esophageal cancer
ECSCs Esophageal cancer stem cells
EGFR Epidermal growth factor receptor
EMT Epithelial mesenchymal transition
ESCC Esophageal squamous cell carcinoma
FACS Fluorescence-activated cell sorting
GEJ Gastroesophageal junction
GERD Gastroesophageal reflux disease
Hh Hedgehog
HIF-1α Hypoxia-inducible-factor 1α
HPV Human Papillomavirus
ICAM1 Intercellular adhesion molecule1
lncRNA Long noncoding RNA
Gli-1 Glioma-associated oncogene homolog 1
mAb Monoclonal antibodies
MRD Minimal residual disease
nCRT Neoadjuvant chemoradiation
MAML1 Mastermind like1
MDR Multidrug resistance
MHC-I MHC class I molecules
REGARD Ramucirumab monotherapy for previously treated advanced gastric or

gastro-oesophageal junction adenocarcinoma
PDPN Podoplanin
PTCH1 Patched 1
ROS Reactive oxygen species
RR Reporter-responsive
scRNA-seq Single-cell RNA sequencing
SCs Stem cells
SHH Sonic Hedgehog
SP Side population
SRR2 Sox2 regulatory region
TGF-β Transforming growths factor-β
TME Tumor microenvironment
T-ICs Tumor-initiating cells
YAP Yes-associated protein
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