186 research outputs found
Observational constraints to boxy/peanut bulge formation time
Boxy/peanut bulges are considered to be part of the same stellar structure as
bars and both could be linked through the buckling instability. The Milky Way
is our closest example. The goal of this letter is determining if the mass
assembly of the different components leaves an imprint in their stellar
populations allowing to estimate the time of bar formation and its evolution.
To this aim we use integral field spectroscopy to derive the stellar age
distributions, SADs, along the bar and disc of NGC 6032. The analysis shows
clearly different SADs for the different bar areas. There is an underlying old
(>=12 Gyr) stellar population for the whole galaxy. The bulge shows star
formation happening at all times. The inner bar structure shows stars of ages
older than 6 Gyrs with a deficit of younger populations. The outer bar region
presents a SAD similar to that of the disc. To interpret our results, we use a
generic numerical simulation of a barred galaxy. Thus, we constrain, for the
first time, the epoch of bar formation, the buckling instability period and the
posterior growth from disc material. We establish that the bar of NGC 6032 is
old, formed around 10 Gyr ago while the buckling phase possibly happened around
8 Gyr ago. All these results point towards bars being long-lasting even in the
presence of gas.Comment: Accepted for publication in MNRAS Letter
Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes
In a companion paper we have presented many products derived from the
application of the spectral synthesis code STARLIGHT to datacubes from the
CALIFA survey, including 2D maps of stellar population properties and 1D
averages in the temporal and spatial dimensions. Here we evaluate the
uncertainties in these products. Uncertainties due to noise and spectral shape
calibration errors and to the synthesis method are investigated by means of a
suite of simulations based on 1638 CALIFA spectra for NGC 2916, with
perturbations amplitudes gauged in terms of the expected errors. A separate
study was conducted to assess uncertainties related to the choice of
evolutionary synthesis models. We compare results obtained with the Bruzual &
Charlot models, a preliminary update of them, and a combination of spectra
derived from the Granada and MILES models. About 100k CALIFA spectra are used
in this comparison.
Noise and shape-related errors at the level expected for CALIFA propagate to
0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities.
Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16
mag for shape errors. Higher order products such as SFHs are more uncertain,
but still relatively stable. Due to the large number statistics of datacubes,
spatial averaging reduces uncertainties while preserving information on the
history and structure of stellar populations. Radial profiles of global
properties, as well as SFHs averaged over different regions are much more
stable than for individual spaxels. Uncertainties related to the choice of base
models are larger than those associated with data and method. Differences in
mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V.
Spectral residuals are ~ 1% on average, but with systematic features of up to
4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte
Dissecting galactic bulges in space and time - I. The importance of early formation scenarios versus secular evolution
The details of bulge formation via collapse, mergers, secular processes or their interplay remain unresolved. To start answering this question and quantify the importance of distinct mechanisms, we mapped a sample of three galactic bulges using data from the integral field spectrograph WiFeS on the ANU's 2.3-m telescope in Siding Spring Observatory. Its high-resolution gratings (R ∼ 7000) allow us to present a detailed kinematic and stellar population analysis of their inner structures with classical and novel techniques. The comparison of those techniques calls for the necessity of inversion algorithms in order to understand complex substructures and separate populations. We use line-strength indices to derive single stellar population equivalent ages and metallicities. Additionally, we use full spectral fitting methods, here the code STECKMAP, to extract their star formation histories. The high quality of our data allows us to study the 2D distribution of different stellar populations (i.e. young, intermediate and old). We can identify their dominant populations based on these age-discriminated 2D light and mass contribution. In all galactic bulges studied, at least 50 per cent of the stellar mass already existed 12 Gyr ago, more than currently predicted by simulations. A younger component (age between ∼1 and ∼8 Gyr) is also prominent and its present day distribution seems to be affected much more strongly by morphological structures, especially bars, than the older one. This in-depth analysis of the three bulges supports the notion of increasing complexity in their evolution, likely to be found in numerous bulge structures if studied at this level of detail, which cannot be achieved by mergers alone and require a non-negligible contribution of secular evolution
Resolving galaxies in time and space: I: Applying STARLIGHT to CALIFA data cubes
Fossil record methods based on spectral synthesis techniques have matured
over the past decade, and their application to integrated galaxy spectra
fostered substantial advances on the understanding of galaxies and their
evolution. Yet, because of the lack of spatial resolution, these studies are
limited to a global view, providing no information about the internal physics
of galaxies. Motivated by the CALIFA survey, which is gathering Integral Field
Spectroscopy over the full optical extent of 600 galaxies, we have developed an
end-to-end pipeline which: (i) partitions the observed data cube into Voronoi
zones in order to, when necessary and taking due account of correlated errors,
increase the S/N, (ii) extracts spectra, including propagated errors and
bad-pixel flags, (iii) feeds the spectra into the STARLIGHT spectral synthesis
code, (iv) packs the results for all galaxy zones into a single file, (v)
performs a series of post-processing operations, including zone-to-pixel image
reconstruction and unpacking the spectral and stellar population properties
into multi-dimensional time, metallicity, and spatial coordinates. This paper
provides an illustrated description of this whole pipeline and its products.
Using data for the nearby spiral NGC 2916 as a show case, we go through each of
the steps involved, presenting ways of visualizing and analyzing this manifold.
These include 2D maps of properties such as the v-field, stellar extinction,
mean ages and metallicities, mass surface densities, star formation rates on
different time scales and normalized in different ways, 1D averages in the
temporal and spatial dimensions, projections of the stellar light and mass
growth (x,y,t) cubes onto radius-age diagrams, etc. The results illustrate the
richness of the combination of IFS data with spectral synthesis, providing a
glimpse of what is to come from CALIFA and future surveys. (Abridged)Comment: A&A, accepte
CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation
We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey,
which has been designed to provide a first step in this direction.We summarize
the survey goals and design, including sample selection and observational
strategy.We also showcase the data taken during the first observing runs
(June/July 2010) and outline the reduction pipeline, quality control schemes
and general characteristics of the reduced data. This survey is obtaining
spatially resolved spectroscopic information of a diameter selected sample of
galaxies in the Local Universe (0.005< z <0.03). CALIFA has been
designed to allow the building of two-dimensional maps of the following
quantities: (a) stellar populations: ages and metallicities; (b) ionized gas:
distribution, excitation mechanism and chemical abundances; and (c) kinematic
properties: both from stellar and ionized gas components. CALIFA uses the PPAK
Integral Field Unit (IFU), with a hexagonal field-of-view of
\sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing
dithering scheme. The optical wavelength range is covered from 3700 to 7000
{\AA}, using two overlapping setups (V500 and V1200), with different
resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey,
intended for the community. The reduced data will be released, once the quality
has been guaranteed. The analyzed data fulfill the expectations of the original
observing proposal, on the basis of a set of quality checks and exploratory
analysis.
We conclude from this first look at the data that CALIFA will be an important
resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and
Astrophysic
CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey
JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe
Stellar Population gradients in galaxy discs from the CALIFA survey
While studies of gas-phase metallicity gradients in disc galaxies are common,
very little has been done in the acquisition of stellar abundance gradients in
the same regions. We present here a comparative study of the stellar
metallicity and age distributions in a sample of 62 nearly face-on, spiral
galaxies with and without bars, using data from the CALIFA survey. We measure
the slopes of the gradients and study their relation with other properties of
the galaxies. We find that the mean stellar age and metallicity gradients in
the disc are shallow and negative. Furthermore, when normalized to the
effective radius of the disc, the slope of the stellar population gradients
does not correlate with the mass or with the morphological type of the
galaxies. Contrary to this, the values of both age and metallicity at 2.5
scale-lengths correlate with the central velocity dispersion in a similar
manner to the central values of the bulges, although bulges show, on average,
older ages and higher metallicities than the discs. One of the goals of the
present paper is to test the theoretical prediction that non-linear coupling
between the bar and the spiral arms is an efficient mechanism for producing
radial migrations across significant distances within discs. The process of
radial migration should flatten the stellar metallicity gradient with time and,
therefore, we would expect flatter stellar metallicity gradients in barred
galaxies. However, we do not find any difference in the metallicity or age
gradients in galaxies with without bars. We discuss possible scenarios that can
lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&
International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19
STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight
- …