24 research outputs found

    769-6 Inhibitory Effect of Lovastatin on Human Coronary Smooth Muscle Cell Proliferation

    Get PDF
    Longterm administration of lipid lowering agents has been shown to cause regression of coronary atherosclerosis. To evaluate the mechanism of such regression, we studied the effect of Lovastatin (HMG coenzyme A reductase inhibitor) on the smooth muscle cells cultured from atherosclerotic plaque obtained from 5 human coronary arteries undergoing directional coronary atherectomy for de novo lesions. Arterial smooth muscle cell lines were created by 3–5 passages. These cells were then placed at a density of 3000 cells/ml in M-199 medium with 10% fetal bovine serum. They were exposed to Lovastatin at varying concentrations between 10-9 to 10-4 M. The coronary arterial smooth muscle cells were inhibited in a dose dependent manner. The table below shows the actual cell counts at various concentrations of Lovastatin in the 5 patients.Effect of Lovastatin on smooth muscle cell proliferationPTControlMitogen10-910-810-710-610-510-4MJ.B.25755216432538753320297525751901M.P28794390412539793629309820951971I.H.23893613336831532841222120061696M.L.29005938481739093199272920721092W.C.2830372932102710209317731292934Mean27154581396935253016255920081519ConclusionHMG Coenzyme A reductase inhibitor Lovastatin has a strong antiporliferative effect on human coronary smooth muscle cells. These observations suggest that antiproliferative effect of Lovastatin may be responsible for causing regression of atherosclerotic lesions in addition to its lipid lowering effects

    Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): A phase 2, randomized, sham-controlled trial

    Get PDF
    Background -In non-randomized, open-label studies, a transcatheter interatrial shunt device (IASD, Corvia Medical) was associated with lower pulmonary capillary wedge pressure (PCWP), less symptoms, and greater quality of life and exercise capacity in patients with heart failure (HF) and mid-range or preserved ejection fraction (EF ≥ 40%). We conducted the first randomized, sham-controlled trial to evaluate the IASD in HF with EF ≥ 40%. Methods -REDUCE LAP-HF I was a phase 2, randomized, parallel-group, blinded multicenter trial in patients with New York Heart Association (NYHA) class III or ambulatory class IV HF, EF ≥ 40%, exercise PCWP ≥ 25 mmHg, and PCWP-right atrial pressure gradient ≥ 5 mmHg. Participants were randomized (1:1) to the IASD vs. a sham procedure (femoral venous access with intracardiac echocardiography but no IASD placement). The participants and investigators assessing the participants during follow-up were blinded to treatment assignment. The primary effectiveness endpoint was exercise PCWP at 1 month. The primary safety endpoint was major adverse cardiac, cerebrovascular, and renal events (MACCRE) at 1 month. PCWP during exercise was compared between treatment groups using a mixed effects repeated measures model analysis of covariance that included data from all available stages of exercise. Results -A total of 94 patients were enrolled, of which n=44 met inclusion/exclusion criteria and were randomized to the IASD (n=22) and control (n=22) groups. Mean age was 70±9 years and 50% were female. At 1 month, the IASD resulted in a greater reduction in PCWP compared to sham-control (P=0.028 accounting for all stages of exercise). Peak PCWP decreased by 3.5±6.4 mmHg in the treatment group vs. 0.5±5.0 mmHg in the control group (P=0.14). There were no peri-procedural or 1-month MACCRE in the IASD group and 1 event (worsening renal function) in the control group (P=1.0). Conclusions -In patients with HF and EF ≥ 40%, IASD treatment reduces PCWP during exercise. Whether this mechanistic effect will translate into sustained improvements in symptoms and outcomes requires further evaluation. Clinical Trial Registration -URL: http://clinicaltrials.gov. Unique identifier: NCT02600234

    Opportunities and challenges in the use of coal fly ash for soil improvements – a review

    Get PDF
    Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
    corecore