41 research outputs found

    CFD simulation for wind comfort and safety in urban area: a case study of Coventry university central campus

    Get PDF

    Effect of Marginal-Quality Irrigation on Accumulation of some Heavy Metals (Mn, Pb, and Zn) in TypicTorripsamment Soils and Food Crops

    Get PDF
    Lack of active sorption sites in sandy soils renders metals added by irrigation water more labile and increases their soil-to-plant transfer. Thus, this study investigated the long-term impacts of irrigation using sewage effluents and contaminated groundwater on metal accumulations in TypicTorripsamment soils, and edible parts of food crops. Nine sites in El-Gabal El-Asfar farm, south-eastern to the Nile Delta of Egypt, were selected. At each site, irrigation water, soil (0-30 cm), and the crop's edible part were sampled in triplicates and analyzed for Mn, Pb, and Zn. Results revealed significant (p < 0.05) differences in metal concentrations among water sources. Thus, constant irrigation caused significant spatial variations in total and available metal contents in soils. Total contents of Pb (in four sites) and Zn (in all sites) exceed the lithosphere range, while the available contents of the three metals exceeded the safe limits in all soils. The index of geo-accumulation indicated no Mn pollution but showed elevated pollution risks for Pb and Zn. The three metals showed high availability ratios, proving the effect of light soil texture. The multivariate statistical analysis indicated that Mn and Zn had similar geochemical behaviors in soils. Metal contents in all crop's edible parts surpassed the safe limits. The bioaccumulation factor (BAF) was less than 1.0 for Mn and Zn but higher than 1.0 for Pb. The highest BAFs occurred in cabbage leaves, indicating the phytoextraction potential of this species. Sufficient water treatment and proper remediation techniques are recommended to alleviate metal accumulation in food crops and their transfer via the food chain

    Metastatic collecting duct carcinoma of the kidney treated with sunitinib

    Get PDF
    Collecting duct carcinoma (CDC) of the kidney is a rare and aggressive malignant tumor arising from the distal collecting tubules which has been shown to have a poor response to several kinds of systemic therapy. We present a case of metastatic CDC that responded favorably to a multiple tyrosine kinase inhibitor, sunitinib, achieving a partial response in both lung and skeletal metastases. To our knowledge, this is the first report showing therapeutic activity of sunitinib against CDC. Considering these findings, it would be worthwhile prospectively investigating the role of multiple tyrosine kinase inhibitors, particularly sunitinib, in the management of metastatic CDC

    Y Chromosome Lineage- and Village-Specific Genes on Chromosomes 1p22 and 6q27 Control Visceral Leishmaniasis in Sudan

    Get PDF
    Familial clustering and ethnic differences suggest that visceral leishmaniasis caused by Leishmania donovani is under genetic control. A recent genome scan provided evidence for a major susceptibility gene on Chromosome 22q12 in the Aringa ethnic group in Sudan. We now report a genome-wide scan using 69 families with 173 affected relatives from two villages occupied by the related Masalit ethnic group. A primary ten-centimorgan scan followed by refined mapping provided evidence for major loci at 1p22 (LOD score 5.65; nominal p = 1.72 × 10(−7); empirical p < 1 × 10(−5); λ(S) = 5.1) and 6q27 (LOD score 3.74; nominal p = 1.68 × 10(−5); empirical p < 1 × 10(−4); λ(S) = 2.3) that were Y chromosome–lineage and village-specific. Neither village supported a visceral leishmaniasis susceptibility gene on 22q12. The results suggest strong lineage-specific genes due to founder effect and consanguinity in these recently immigrant populations. These chance events in ethnically uniform African populations provide a powerful resource in the search for genes and mechanisms that regulate this complex disease

    Chromosomal aberrations in benign and malignant Bilharzia-associated bladder lesions analyzed by comparative genomic hybridization

    Get PDF
    BACKGROUND: Bilharzia-associated bladder cancer (BAC) is a major health problem in countries where urinary schistosomiasis is endemic. Characterization of the genetic alterations in this cancer might enhance our understanding of the pathogenic mechanisms of the disease but, in contrast to nonbilharzia bladder cancer, BAC has rarely been the object of such scrutiny. In the present study, we aimed to characterize chromosomal imbalances in benign and malignant post-bilharzial lesions, and to determine whether their unique etiology yields a distinct cytogenetic profile as compared to chemically induced bladder tumors. METHODS: DNAs from 20 archival paraffin-embedded post-bilharzial bladder lesions (6 benign and 14 malignant) obtained from Sudanese patients (12 males and 8 females) with a history of urinary bilharziasis were investigated for chromosomal imbalances using comparative genomic hybridization (CGH). Subsequent FISH analysis with pericentromeric probes was performed on paraffin sections of the same cases to confirm the CGH results. RESULTS: Seven of the 20 lesions (6 carcinomas and one granuloma) showed chromosomal imbalances varying from 1 to 6 changes. The most common chromosomal imbalances detected were losses of 1p21-31, 8p21-pter, and 9p and gain of 19p material, seen in three cases each, including the benign lesion. CONCLUSION: Most of the detected imbalances have been repeatedly reported in non-bilharzial bladder carcinomas, suggesting that the cytogenetic profiles of chemical- and bilharzia-induced carcinomas are largely similar. However, loss of 9p seems to be more ubiquitous in BAC than in bladder cancer in industrialized countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Land Degradation Vulnerability Mapping in a Newly-Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques

    No full text
    Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for using remote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) &gt; PSQI (0.29) &gt; VQI (0.17) &gt; TQI (0.12) &gt; GI (0.07) &gt; WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security

    Evaluation of Desertification Severity in El-Farafra Oasis, Western Desert of Egypt: Application of Modified MEDALUS Approach Using Wind Erosion Index and Factor Analysis

    No full text
    Desertification is a serious threat to human survival and to ecosystems, especially to inland desert oases. An assessment of desertification severity is essential to ensure national sustainable development for agricultural and land expansion processes in this region. In this study, Index of Land Susceptibility to Wind Erosion (ILSWE) was integrated with a Modified Mediterranean Desertification and Land Use (MEDALUS) method and factor analysis (FA) to develop a GIS-based model for mapping desertification severity. The model was then applied to 987.77 km2 in the El-Farafra Oasis, located in the Western Desert of Egypt, as a case study. Climate and field survey data together with remote sensing images were used to generate five quality indices (soil, climate, vegetation, land management and wind erosion). Based on the FA, a weighted value was assigned to each index. Five thematic layers representing the indices were created within the GIS environment and overlaid using the weighted sum model. The developed model showed that 59% of the total area was identified as high-critical and 38% as medium-critical. The results of an environmentally sensitive area index suggested by the original MEDALUS model indicated similar results: 18.37% of the total area was classified as high-critical and 78.73% as medium-critical. However, the sensitivity analysis indicated that weights derived from FA resulted in better performance of the developed spatial model than that derived from the original MEDALUS method. The proposed model would be a suitable tool for monitoring vulnerable zones, and could be a starting point for sustainable agricultural development in inland oases

    Evaluation of Desertification Severity in El-Farafra Oasis, Western Desert of Egypt: Application of Modified MEDALUS Approach Using Wind Erosion Index and Factor Analysis

    No full text
    Desertification is a serious threat to human survival and to ecosystems, especially to inland desert oases. An assessment of desertification severity is essential to ensure national sustainable development for agricultural and land expansion processes in this region. In this study, Index of Land Susceptibility to Wind Erosion (ILSWE) was integrated with a Modified Mediterranean Desertification and Land Use (MEDALUS) method and factor analysis (FA) to develop a GIS-based model for mapping desertification severity. The model was then applied to 987.77 km2 in the El-Farafra Oasis, located in the Western Desert of Egypt, as a case study. Climate and field survey data together with remote sensing images were used to generate five quality indices (soil, climate, vegetation, land management and wind erosion). Based on the FA, a weighted value was assigned to each index. Five thematic layers representing the indices were created within the GIS environment and overlaid using the weighted sum model. The developed model showed that 59% of the total area was identified as high-critical and 38% as medium-critical. The results of an environmentally sensitive area index suggested by the original MEDALUS model indicated similar results: 18.37% of the total area was classified as high-critical and 78.73% as medium-critical. However, the sensitivity analysis indicated that weights derived from FA resulted in better performance of the developed spatial model than that derived from the original MEDALUS method. The proposed model would be a suitable tool for monitoring vulnerable zones, and could be a starting point for sustainable agricultural development in inland oases
    corecore