314 research outputs found

    Asynchronous glacier dynamics during the Antarctic Cold Reversal in central Patagonia

    Get PDF
    We present 14 new 10Be cosmogenic nuclide exposure ages quantifying asynchronous readvances during the Antarctic Cold Reversal from glaciers in the Baker Valley region of central Patagonia. We constrain glacier and ice-dammed palaeolake dynamics using a landsystems approach, concentrating on outlet glaciers from the eastern Northern Patagonian Icefield (NPI) and Monte San Lorenzo (MSL). Soler Glacier (NPI) produced lateral moraines above Lago Bertrand from 15.1 ± 0.7 to 14.0 ± 0.6 ka, when it dammed the drainage of Lago General Carrera/Buenos Aires through Río Baker at a bedrock pinning point. At this time, Soler Glacier terminated into the 400 m “Deseado” level of the ice-dammed palaeolake. Later, Calluqueo Glacier (MSL) deposited subaerial and subaqueous moraines in the Salto Valley near Cochrane at 13.0 ± 0.6 ka. These moraines were deposited in an ice-dammed palaeolake unified through the Baker Valley (Lago Chalenko; 350 m asl). The Salto Valley glaciolacustrine landsystem includes subaqueous morainal banks, ice-scoured bedrock, glacial diamicton plastered onto valley sides, perched delta terraces, kame terraces, ice-contact fans, palaeoshorelines and subaerial push and lateral moraines. Boulders from the subaqueous Salto Moraine became exposed at 12.1 ± 0.6 years, indicating palaeolake drainage. These data show an asynchronous advance of outlet glaciers from the Northern Patagonian Icefield and Monte San Lorenzo during the Antarctic Cold Reversal. These advances occurred during a period of regional climatic cooling, but differential moraine extent and timing of advance was controlled by topography and calving processes

    Was Scotland deglaciated during the Younger Dryas?

    Get PDF
    Recent work has produced data that challenges the canonical view that the Younger Dryas (c.12.9–11.7 ka) was a time of glacier expansion across the North Atlantic. Boulders on moraines located within the inner sector of the Scottish Loch Lomond Stadial (≈Younger Dryas) ice cap yield cosmogenic exposure ages 12.8–11.3 ka with a best estimate moraine age of 11.5 ± 0.6 ka. This age contradicts the interpretation that Scotland was completely deglaciated as early as 12,580 cal yr BP and no later than 12,200 cal yr BP. Our data supports the previously accepted scenario, supported by a wide variety of data, that final deglaciation of Scotland did not occur until late in the Loch Lomond Stadial or the early Holocene

    Lowland river responses to intraplate tectonism and climate forcing quantified with luminescence and cosmogenic 10Be

    Get PDF
    Intraplate tectonism has produced large-scale folding that steers regional drainage systems, such as the 1600 km-long Cooper Ck, en route to Australia’s continental depocentre at Lake Eyre. We apply cosmogenic 10Be exposure dating in bedrock, and luminescence dating in sediment, to quantify the erosional and depositional response of Cooper Ck where it incises the rising Innamincka Dome. The detachment of bedrock joint-blocks during extreme floods governs the minimum rate of incision (17.4±6.5 mm/ky) estimated using a numerical model of episodic erosion calibrated with our 10Be measurements. The last big-flood phase occurred no earlier than ~112–121ka. Upstream of the Innamincka Dome long-term rates of alluvial deposition, partly reflecting synclinal-basin subsidence, are estimated from 47 luminescence dates in sediments accumulated since ~270 ka. Sequestration of sediment in subsiding basins such as these may account for the lack of Quaternary accumulation in Lake Eyre, and moreover suggests that notions of a single primary depocentre at base-level may poorly represent lowland, arid-zone rivers. Over the period ~75–55 ka Cooper Ck changed from a bedload- dominant, laterally-active meandering river to a muddy anabranching channel network up to 60 km wide. We propose that this shift in river pattern was a product of base-level rise linked with the slowly deforming syncline–anticline structure, coupled with a climate-forced reduction in discharge. The uniform valley slope along this subsiding alluvial and rising bedrock system represents an adjustment between the relative rates of deformation and the ability of greatly enhanced flows at times during the Quaternary to incise the rising anticline. Hence, tectonic and climate controls are balanced in the long term

    Widespread erosion on high plateaus during recent glaciations in Scandinavia

    Get PDF
    Glaciers create some of Earth’s steepest topography; yet, many areas that were repeatedly overridden by ice sheets in the last few million years include extensive plateaus. The distinct geomorphic contrast between plateaus and the glacial troughs that dissect them has sustained two long-held hypotheses: first, that ice sheets perform insignificant erosion beyond glacial troughs, and, second, that the plateaus represent ancient pre-glacial landforms bearing information of tectonic and geomorphic history prior to Pliocene–Pleistocene global cooling (~3.5 Myr ago). Here we show that the Fennoscandian ice sheets drove widespread erosion across plateaus far beyond glacial troughs. We apply inverse modelling to 118 new cosmogenic 10Be and 26Al measurements to quantify ice sheet erosion on the plateaus fringing the Sognefjorden glacial trough in western Norway. Our findings demonstrate substantial modification of the pre-glacial landscape during the Quaternary, and that glacial erosion of plateaus is important when estimating the global sediment flux to the oceans

    Devising quality assurance procedures for assessment of legacy geochronological data relating to deglaciation of the last British-Irish Ice Sheet

    Get PDF
    This contribution documents the process of assessing the quality of data within a compilation of legacy geochronological data relating to the last British-Irish Ice Sheet, a task undertaken as part of a larger community-based project (BRITICE-CHRONO) that aims to improve understanding of the ice sheet's deglacial evolution. As accurate reconstructions depend on the quality of the available data, some form of assessment is needed of the reliability and suitability of each given age(s) in our dataset. We outline the background considerations that informed the quality assurance procedures devised given our specific research question. We describe criteria that have been used to make an objective assessment of the likelihood that an age is influenced by the technique specific sources of geological uncertainty. When these criteria were applied to an existing database of all geochronological data relating to the last British-Irish Ice Sheet they resulted in a significant reduction in data considered suitable for synthesis. The assessed data set was used to test a Bayesian approach to age modelling ice stream retreat and we outline our procedure that allows us to minimise the influence of potentially erroneous data and maximise the accuracy of the resultant age models

    Deglaciation of Fennoscandia

    Get PDF
    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This 25 is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, we locate the LGM extent of the ice sheet in northwestern Russia further east than previously suggested and conclude that it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP, and propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models

    Growing topography due to contrasting rock types in a tectonically dead landscape

    Get PDF
    Many mountain ranges survive in a phase of erosional decay for millions of years (Myr) following the cessation of tectonic activity. Landscape dynamics in these post-orogenic settings have long puzzled geologists due to the expectation that topographic relief should decline with time. Our understanding of how denudation rates, crustal dynamics, bedrock erodibility, climate, and mantle-driven processes interact to dictate the persistence of relief in the absence of ongoing tectonics is incomplete. Here we explore how lateral variations in rock type, ranging from resistant quartzites to less-resistant schists and phyllites and up to the least-resistant gneisses and granitic rocks, have affected rates and patterns of denudation and topographic forms in a humid semitropical, high-relief, post-orogenic landscape in Brazil where active tectonics ended hundreds of Myr ago. We show that denudation rates are negatively correlated to topographic relief, channel steepness and modern precipitation rates. Denudation instead correlates with inferred bedrock strength, with resistant rocks denuding more slowly relative to more erodible rock units, and suggest that the efficiency of fluvial erosion varies primarily due to these bedrock differences. Variations in erodibility continue to drive contrasts in rates of denudation in a tectonically inactive landscape evolving for hundreds of Myr, suggesting that equilibrium is not a natural attractor state and that relief continues to grow through time. Over the long timescales of post-orogenic development, exposure at the surface of rock types with differential erodibility can become a dominant control on landscape dynamics by producing spatial variations in geomorphic processes and rates, promoting the survival of relief, and determining spatial differences in erosional response timescales long after cessation of mountain building

    Extent and retreat history of the Barra Fan Ice Stream offshore western Scotland and northern Ireland during the last glaciation

    Get PDF
    During the Last Glacial Maximum (LGM) the marine-terminating Barra Fan Ice Stream (BFIS), a major conduit of the British Irish Ice Sheet (BIIS), drained much of western Scotland and northwest Ireland with ice streaming onto the continental shelf of the Malin Sea. The extent and retreat history of this ice stream across the shelf, until now, is not well known. In particular, geochronological constraints on the history of this ice stream have thus far been restricted to deep-sea cores or terrestrial cosmogenic nuclide dating onshore, with ages across the shelf absent. To understand the possible external forcing factors acting on this marine terminating ice stream during retreat, improved geochronological constraint on its deglaciation is necessary. Here, we present new geophysical data, marine sediment cores and over forty radiocarbon dates to provide important constraints on maximum extent of the BFIS, as well as the timing and pattern of retreat back across the Malin Shelf. Dated moraines and grounding-zone wedges (GZW) seen in seafloor sub-bottom profiles provide evidence that the BFIS reached the Malin Shelf edge during the LGM and was at its maximum extent around 26.7 ka BP. The presence of two sets of GZWs suggests that the style of retreat was episodic. The new radiocarbon chronology shows that retreat from the shelf edge was underway by 25.9 ka BP, with the majority of the continental shelf ice free by 23.2 ka BP, and that glacimarine conditions were present in the Sea of Hebrides by 20.2 ka BP at the latest. Collectively, these results indicate that the majority of the Malin Shelf was free of grounded ice by ∼21.5–20 ka BP, which is up to 4000 years earlier than previously reconstructed. We attribute this early deglaciation to high relative sea level caused by glacial isostatic depression when the BIIS reached its maximum extent promoting ice shelf and grounding line instability. Two deep troughs, forming reverse bed slopes, aided the continued retreat of the BFIS. This suggests that local ice loading and bed morphology can be significant controls on the destabilisation of a marine-terminating ice stream and can override the influence of ocean and atmospheric temperatures

    Weathering fluxes and sediment provenance on the SW Scottish shelf during the last deglaciation

    Get PDF
    The reconstruction of past ice sheet dynamics can shed a light on long-term ice stream activity, and in turn provide constraints on the response of modern ice sheets to climate change. The Hebrides Ice Stream (HIS) flowed across part of the western Scottish shelf to the shelf-break during the last glacial cycle and drained a large portion of the northern sector of the British Irish-Ice Sheet. To investigate the deglacial dynamics of the HIS following the Last Glacial Maximum, lead (Pb) isotope records were extracted from the FeMn oxyhydroxide and detrital fractions of recovered laminated glacimarine mud sequences to monitor the changing activity of HIS during its retreat. These provide timing and some source information of glacially weathered inputs to the marine environment. The FeMn oxyhydroxide fraction in the samples is dominated by allochthonous particles (pre-formed) and shows a marked decrease from radiogenic (≤ 20.05 206Pb/204Pb) at ~ 21 cal ka BP to less radiogenic Pb isotope compositions (~ 19.48) towards the Windermere Interstadial (15.4–13 ka). This decrease represents a reduction in the flux of subglacially-derived radiogenic Pb to the continental shelf is interpreted as being associated with the break-up of the ice-stream in western Scotland around that time. The Pb, Sr and Nd isotopic signatures of the detrital fraction indicate a preponderance of Moine-sourced fine sediments (originated from the NW Highlands) in the core locations from ~ 21 to 15 cal ka BP (Dimlington Stadial - Windermere Interstadial), most likely dictated by the orientation of ice flow, tidal and oceanic current directions and sediment delivery. In contrast, ice rafted debris in a ~ 21 cal ka BP old basal diamicton contains volcanic-derived material, suggesting different provenance for different grain sizes. The FeMn oxyhydroxide 208Pb/204Pb ratio shows an unusual inversion relative to the other Pb isotope ratios, and is attributed to the introduction of secondary weathering phases from a source with contrasting 208Pb/204Pb but similar 206Pb/204Pb and 207Pb/204Pb. In the detrital fraction, the inversions are constrained to periodic spikes, which may indicate an increased contribution from a high Th/U source, potentially the neighbouring Archaean amphibolitic Lewisian basement in the Outer Hebrides. This study demonstrates how geochemical investigation on continental shelves can be used to constrain the timing, activity and flow sources of palaeo-ice streams
    corecore