555 research outputs found

    Statistically derived contributions of diverse human influences to twentieth-century temperature changes

    Full text link
    The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologia (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autonoma de Mexico. (CONACYT-310026 - Consejo Nacional de Ciencia y Tecnologia; PASPA DGAPA of the Universidad Nacional Autonoma de Mexico

    Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    Get PDF
    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV) (ergs/s) > 44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N_H (cm^-2) = 23.5 +/- 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.Comment: 22 pages, 15 figures, accepted for publication in ApJ, full resolution version available at http://www.stsci.edu/~donley/iragn_paper

    Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes mellitus

    Get PDF
    OBJECTIVE: Osteoprotegerin (OPG) acts as an important regulatory molecule in atherosclerosis. Recent studies report that thiazolidinediones could affect OPG expression. We investigated the relationship between OPG and inflammatory cytokines and the effects of pioglitazone (a PPARγ (PPARG) agonist) versus metformin on serum OPG levels in type 2 diabetic patients. DESIGN AND METHODS: Sixty-seven type 2 diabetic patients were included in this study. They were assigned to pioglitazone (15 mg/day, n=34) or metformin (1000 mg/day, n=33) during 24 weeks. Various anthropometric and metabolic parameters, OPG, interleukin 6 (IL6), C-reactive protein (CRP), adiponectin, and homeostasis model assessment of insulin resistance (HOMA-IR), were measured at baseline and at 6 months of treatment. RESULTS: Serum OPG levels correlated significantly with fasting plasma glucose (FPG), HbAlc, HOMA-IR, IL6, and CRP, and inversely correlated with adiponectin after adjusting for age (P<0.05). Multiple regression analysis showed that FPG, HbAlc, and adioponectin were independently correlated with OPG level. After 6 months of treatment, the reduction in FPG and HbAlc levels was similar between the two groups. Pioglitazone treatment significantly increased body mass index (P<0.05) and waist circumference (P<0.05) and decreased triglycerides (P<0.05) and HOMA-IR (P<0.01). The adiponectin concentration was increased (P<0.05), and OPG and CRP levels were decreased in the pioglitazone group (P<0.05), but were unchanged in the metformin group. The changes in serum OPG in the pioglitazone group showed significant correlation with changes in FPG, HbAlc, and adiponectin. CONCLUSIONS: In type 2 diabetic patients, pioglitazone decreases OPG levels, and this decrease in OPG levels might be associated with the increase in adiponectin.ope

    SUNRISE: The rich molecular inventory of high-redshift dusty galaxies revealed by broadband spectral line surveys

    Full text link
    Understanding the nature of high-zz dusty galaxies requires a comprehensive view of their ISM and molecular complexity. However, the molecular ISM at high redshifts is commonly studied using only a few species beyond CO, limiting our understanding of the ISM in these objects. In this paper, we present the results of deep 3 mm spectral line surveys using the NOEMA targeting two lensed dusty galaxies: APM 08279+5255 (APM), a quasar at redshift z=3.911z=3.911, and NCv1.143 (NC), a z=3.565z=3.565 starburst galaxy. The spectral line surveys cover rest-frame frequencies from about 330-550 GHz. We report the detection of 38 and 25 emission lines in APM and NC, respectively. The spectra reveal the chemical richness and the complexity of the physical properties of the ISM. By comparing the spectra of the two sources and combining the gas excitation analysis, we find that the physical properties and the chemical imprints of the ISM are different between them: the molecular gas is more excited in APM, exhibiting higher molecular-gas temperatures and densities compared to NC; the chemical abundances in APM are akin to the values of local AGN, showing boosted relative abundances of the dense gas tracers that might be related to high-temperature chemistry and/or XDRs, while NC more closely resembles local starburst galaxies. The most significant differences are found in H2O, where the 448 GHz H2O line is significantly brighter in APM, likely linked to the intense far-infrared radiation from the dust powered by AGN. Our astrochemical model suggests that, at such high column densities, UV radiation is less important in regulating the ISM, while CRs (and/or X-rays and shocks) are the key players in shaping the abundance of the molecules. Such deep spectral line surveys open a new window to study the physical and chemical properties of the ISM and the radiation field of galaxies in the early Universe. (abridged)Comment: Submitted to A&A; under review. Abstract abridged. Comments are welcome

    Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility

    Get PDF
    Fully addressable DNA nanostructures, especially DNA origami, possess huge potential to serve as inherently biocompatible and versatile molecular platforms. However, their use as delivery vehicles in therapeutics is compromised by their low stability and poor transfection rates. This study shows that DNA origami can be coated by precisely defined one-to-one protein-dendron conjugates to tackle the aforementioned issues. The dendron part of the conjugate serves as a cationic binding domain that attaches to the negatively charged DNA origami surface via electrostatic interactions. The protein is attached to dendron through cysteine-maleimide bond, making the modular approach highly versatile. This work demonstrates the coating using two different proteins: bovine serum albumin (BSA) and class II hydrophobin (HFBI). The results reveal that BSA-coating significantly improves the origami stability against endonucleases (DNase I) and enhances the transfection into human embryonic kidney (HEK293) cells. Importantly, it is observed that BSA-coating attenuates the activation of immune response in mouse primary splenocytes. Serum albumin is the most abundant protein in the blood with a long circulation half-life and has already found clinically approved applications in drug delivery. It is therefore envisioned that the proposed system can open up further opportunities to tune the properties of DNA nanostructures in biological environment, and enable their use in various delivery applications.Peer reviewe
    corecore