283 research outputs found

    Dynamics of localization in a waveguide

    Get PDF
    This is a review of the dynamics of wave propagation through a disordered N-mode waveguide in the localized regime. The basic quantities considered are the Wigner-Smith and single-mode delay times, plus the time-dependent power spectrum of a reflected pulse. The long-time dynamics is dominated by resonant transmission over length scales much larger than the localization length. The corresponding distribution of the Wigner-Smith delay times is the Laguerre ensemble of random-matrix theory. In the power spectrum the resonances show up as a 1/t^2 tail after N^2 scattering times. In the distribution of single-mode delay times the resonances introduce a dynamic coherent backscattering effect, that provides a way to distinguish localization from absorption.Comment: 18 pages including 8 figures; minor correction

    Deterministic polarization chaos from a laser diode

    Full text link
    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure

    Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Get PDF
    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders

    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Get PDF
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI

    Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    Get PDF
    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats

    Potential for early warning of viral influenza activity in the community by monitoring clinical diagnoses of influenza in hospital emergency departments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although syndromic surveillance systems are gaining acceptance as useful tools in public health, doubts remain about whether the anticipated early warning benefits exist. Many assessments of this question do not adequately account for the confounding effects of autocorrelation and trend when comparing surveillance time series and few compare the syndromic data stream against a continuous laboratory-based standard. We used time series methods to assess whether monitoring of daily counts of Emergency Department (ED) visits assigned a clinical diagnosis of influenza could offer earlier warning of increased incidence of viral influenza in the population compared with surveillance of daily counts of positive influenza test results from laboratories.</p> <p>Methods</p> <p>For the five-year period 2001 to 2005, time series were assembled of ED visits assigned a provisional ED diagnosis of influenza and of laboratory-confirmed influenza cases in New South Wales (NSW), Australia. Poisson regression models were fitted to both time series to minimise the confounding effects of trend and autocorrelation and to control for other calendar influences. To assess the relative timeliness of the two series, cross-correlation analysis was performed on the model residuals. Modelling and cross-correlation analysis were repeated for each individual year.</p> <p>Results</p> <p>Using the full five-year time series, short-term changes in the ED time series were estimated to precede changes in the laboratory series by three days. For individual years, the estimate was between three and 18 days. The time advantage estimated for the individual years 2003–2005 was consistently between three and four days.</p> <p>Conclusion</p> <p>Monitoring time series of ED visits clinically diagnosed with influenza could potentially provide three days early warning compared with surveillance of laboratory-confirmed influenza. When current laboratory processing and reporting delays are taken into account this time advantage is even greater.</p

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    Get PDF
    L). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta.Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses.Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages

    Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objects in our environment are often partly occluded, yet we effortlessly perceive them as whole and complete. This phenomenon is called visual amodal completion. Psychophysical investigations suggest that the process of completion starts from a representation of the (visible) physical features of the stimulus and ends with a completed representation of the stimulus. The goal of our study was to investigate both stages of the completion process by localizing both brain regions involved in processing the physical features of the stimulus as well as brain regions representing the completed stimulus.</p> <p>Results</p> <p>Using fMRI adaptation we reveal clearly distinct regions in the visual cortex of humans involved in processing of amodal completion: early visual cortex – presumably V1 -processes the local contour information of the stimulus whereas regions in the inferior temporal cortex represent the completed shape. Furthermore, our data suggest that at the level of inferior temporal cortex information regarding the original local contour information is not preserved but replaced by the representation of the amodally completed percept.</p> <p>Conclusion</p> <p>These findings provide neuroimaging evidence for a multiple step theory of amodal completion and further insights into the neuronal correlates of visual perception.</p

    Cognitive health among older adults in the United States and in England

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive function is a key determinant of independence and quality of life among older adults. Compared to adults in England, US adults have a greater prevalence of cardiovascular risk factors and disease that may lead to poorer cognitive function. We compared cognitive performance of older adults in the US and England, and sought to identify sociodemographic and medical factors associated with differences in cognitive function between the two countries.</p> <p>Methods</p> <p>Data were from the 2002 waves of the US Health and Retirement Study (HRS) (n = 8,299) and the English Longitudinal Study of Ageing (ELSA) (n = 5,276), nationally representative population-based studies designed to facilitate direct comparisons of health, wealth, and well-being. There were differences in the administration of the HRS and ELSA surveys, including use of both telephone and in-person administration of the HRS compared to only in-person administration of the ELSA, and a significantly higher response rate for the HRS (87% for the HRS vs. 67% for the ELSA). In each country, we assessed cognitive performance in non-hispanic whites aged 65 and over using the same tests of memory and orientation (0 to 24 point scale).</p> <p>Results</p> <p>US adults scored significantly better than English adults on the 24-point cognitive scale (unadjusted mean: 12.8 vs. 11.4, P < .001; age- and sex-adjusted: 13.2 vs. 11.7, P < .001). The US cognitive advantage was apparent even though US adults had a significantly higher prevalence of cardiovascular risk factors and disease. In a series of OLS regression analyses that controlled for a range of sociodemographic and medical factors, higher levels of education and wealth, and lower levels of depressive symptoms, accounted for some of the US cognitive advantage. US adults were also more likely to be taking medications for hypertension, and hypertension treatment was associated with significantly better cognitive function in the US, but not in England (P = .014 for treatment × country interaction).</p> <p>Conclusion</p> <p>Despite methodological differences in the administration of the surveys in the two countries, US adults aged ≥ 65 appeared to be cognitively healthier than English adults, even though they had a higher burden of cardiovascular risk factors and disease. Given the growing number of older adults worldwide, future cross-national studies aimed at identifying the medical and social factors that might prevent or delay cognitive decline in older adults would make important and valuable contributions to public health.</p
    corecore