78 research outputs found

    Using ChemCam derived geochemistry to identify the paleonet sediment transport direction and source region characteristics of the Stimson formation in Gale crater, Mars.

    Get PDF
    The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater

    Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater

    Get PDF
    Mars Science Laboratory (MSL) Curiosity rover data are used to describe the morphology of desiccation cracks observed in ancient lacustrine strata at Gale crater, Mars, and to interpret their paleoenvironmental setting. The desiccation cracks indicate subaerial exposure of lacustrine facies in the Sutton Island member of the Murray formation. In association with ripple cross-stratification and possible eolian cross-bedding, these facies indicate a transition from longer-lived perennial lakes recorded by older strata to younger lakes characterized by intermittent exposure. The transition from perennial to episodically exposed lacustrine environments provides evidence for local to regional climate change that can help constrain Mars climate models

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    An insight into ancient aeolian processes and post‐Noachian aqueous alteration in Gale crater, Mars, using ChemCam geochemical data from the Greenheugh capping unit

    Get PDF
    Aeolian processes have shaped and contributed to the geological record in Gale crater, Mars, long after the fluviolacustrine system existed ∌3 Ga ago. Understanding these aeolian deposits, particularly those which have been lithified and show evidence for aqueous alteration, can help to constrain the environment at their time of deposition and the role of liquid water later in Mars’ history. The NASA Curiosity rover investigated a prominent outcrop of aeolian sandstone within the Stimson formation at the Greenheugh pediment as part of its investigation of the Glen Torridon area. In this study, we use geochemical data from ChemCam to constrain the effects of aeolian sedimentary processes, sediment provenance, and diagenesis of the sandstone at the Greenheugh pediment, comparing the Greenheugh data to the results from previous Stimson localities situated 2.5 km north and >200 m lower in elevation. Our results, supported by mineralogical data from CheMin, show that the Stimson formation at the Greenheugh pediment was likely sourced from an olivine-rich unit that may be present farther up the slopes of Gale crater’s central mound. Our results also suggest that the Greenheugh pediment Stimson formation was cemented by surface water runoff such as that which may have formed Gediz Vallis. The lack of alteration features in the Stimson formation at the Greenheugh pediment relative to those of the Emerson and Naukluft plateaus suggests that groundwater was not as available at this locality compared to the others. However, all sites share diagenesis at the unconformity

    Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a low-pressure, high-temperature (>870 °C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∌40 wt.% crystalline and ∌60 wt.% X-ray amorphous material and a bulk composition with ∌74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∌17 wt.% of bulk sample), tridymite (∌14 wt.%), sanidine (∌3 wt.%), cation-deficient magnetite (∌3 wt.%), cristobalite (∌2 wt.%), and anhydrite (∌1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∌39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO_2 and Fe_2O_3T oxides (∌5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients:In-situ Analytical Methods of the Future

    No full text
    • 

    corecore