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Introduction: The NASA Curiosity rover has en-

countered both ancient and modern dune deposits with-

in Gale crater. The modern dunes are actively migrat-

ing across the surface within the Bagnold Dune field of 

which Curiosity conducted analysis campaigns at two 

different localities [1,2]. Variations in mafic-felsic 

mineral abundances between these two sites have been 

related to the aeolian mineral sorting regime for basal-

tic environments identified on the Earth which become 

preferentially enriched in olivine relative to plagioclase 

feldspar with increasing distance from the source [3]. 

This aeolian mineral sorting regime for basaltic miner-

als has also been inferred for Mars from orbital data 

[2,4]. The aim of this study is to investigate whether 

this aeolian mafic-felsic mineral sorting trend has left a 

geochemical signature in the ancient dune deposits 

preserved within the Stimson formation.  

The Stimson formation unconformably overlies the 

Murray formation [5] and consists of thickly laminated, 

cross-bedded sandstone [6]. Stimson outcrops have a 

variable thickness up to 5 m covering a total area of 17 

km2 [5,6]. A dry, aeolian origin was determined for this 

sandstone due to the high sphericity and roundness of 

the grains, uniform bimodal grain size distribution 

(250–710 µm), and 1 m thick cross-beds [6]. Identify-

ing the geochemical signature of mineral sorting can 

provide insights about the paleo-net sediment transport 

direction of the dunes and prevailing wind direction at 

the time of deposition. 

Methods:  We use ChemCam derived major ele-

ment data for host rock Laser-Induced Breakdown 

Spectroscopy analyses [7,8]. Observation point compo-

sitions are generated by averaging 30–50 spectral anal-

yses for each point within a target raster [7,8]. Chem-

Cam analysed the Stimson formation at the Emerson 

and Naukluft Plateaus (Fig. 1). We have removed any 

observation point that has hit an obvious alteration 

feature, with the exception of concretions that are sug-

gested to have formed isochemically [9]. We also re-

moved points with a major-element total outside the 

95–105 wt% range to remove analyses with high vola-

tile contents (i.e., S or H).  

ChemCam’s small sample footprint (350–550 µm) 

is compensated by numerous points to represent most 

of the geochemical variation within a defined strati-

graphic group. The alteration- and dust-free bulk rock 

compositions for key stratigraphic units are estimated 

using a density contour analysis [11]. We next use a 

multivariate cluster analysis to identify the main geo-

chemical components of the Stimson sandstone  (i.e., 

mineral proportions and diagenetic cement). Then, 

average compositions for each cluster are calculated 

using an ANOVA analysis on cluster memberships to 

compare with the bulk density contour compositions. 

Results and Discussion:  Density contour results 

show that, geochemically, the bulk Stimson formation 

is relatively uniform, though subgroups are present for 

Al2O3 and MgO. Contours specific to the Emerson and 

Naukluft Plateau show that the Emerson Plateau has a 

higher bulk MgO composition, while the Naukluft 

Plateau has higher bulk compositions for Al2O3, Na2O 

and K2O (Fig. 2). These differences  in bulk composi-

tions are statistically significant when taking into ac-

count ChemCam instrument precision according to 

equivalence tests conducted for both localities. 

Aside from concretions that likely relate to the iso-

chemical cementation of the bedrock [9], and a few 

occurrences of Ca-sulfate mineral veins and fracture-

Fig. 1: Isopach map of the Stimson formation (red = thick, 

blue = thin) generated using data from [5]. Line with 

triangles shows the Curiosity rover traverse and waypoints. 

Arrows show the locations of CheMin drilled samples Big Sky 

and Okoruso that sampled unaltered Stimson bedrock [10]. 
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Fig. 2 shows the density contours of the Emerson and Naukluft 

Plateaus, a linear regression relating to mafic-felsic mineral 

sorting, and the derived mafic (1 & 2) and felsic (3 & 6) clus-

ters with 1σ error. CheMin mineral compositions for the Big 

Sky drilled sample are from [13]. S = standard error of the 

regression. ChemCam 1σ precision and accuracy are shown 

as dark and light blue crosses respectively. 

associated halos [10,12], Stimson has relatively few 

alteration features compared to the underlying mud-

stones [6,10,12]. Additionally, CheMin FULLPAT 

analyses of the unaltered Big Sky and Okoruso drilled 

samples (Fig. 1) show that Stimson bedrock is domi-

nated by primary igneous minerals and a secondary 

magnetite cementing component, has a relatively small 

amorphous component (<25 wt%) and does not contain 

phyllosilicates [10]. The lack of evidence that the 

Stimson formation has experienced substantial open-

system alteration makes it likely that any geochemical 

effect of mineral sorting regimes and sediment source 

regions have been preserved. 

Seven clusters were identified in the constrained 

Stimson ChemCam dataset using complete linkage and 

Manhattan distance methods. Clusters 2 (n = 186) and 

3 (n = 159) comprise the majority of the ChemCam 

Stimson observation point analyses and are situated 

within the low and high Al2O3 Stimson bulk focal 

compositions respectively. Clusters 1, 2, 3, and 6 were 

shown to lie along a mixing line between CheMin de-

rived mafic and felsic compositions (Fig. 2), with Clus-

ter 1 (n = 24) richer in MgO, and Cluster 6 (n = 10) 

richer in Al2O3, SiO2, Na2O and K2O compared to bulk 

Stimson. As a result, we interpret Clusters 1 and 2 as 

relating to ChemCam analyses of Stimson sandstone 

that have preferentially sampled a high proportion of 

mafic minerals (pigeonite and orthopyroxene). Conse-

quently, Clusters 3 and 6 have likely analysed a greater 

proportion of felsic minerals (plagioclase and K-

feldspar).  

Relatively few (n <16) observation points comprise 

Clusters 4, 5, and 7 which are distinguished from bulk 

Stimson compositions by respective enrichments in 

TiO2, CaO and FeOT. These clusters do not correlate 

with any trends towards CheMin-derived primary igne-

ous mineral compositions and are therefore classed as 

outlying compositions, most likely relating to diagenet-

ic cement [9] or a possible enrichment in rare heavy 

minerals such as ilmenite for Cluster 4.   

Mineral sorting trends in the Ancient Stimson 

Dunes: Generally, the Emerson Plateau Stimson shows 

a higher proportion of ChemCam observation points 

with mafic cluster memberships (1 & 2) relative to the 

Naukluft Plateau which is richer in felsic cluster mem-

berships (3 & 6). This suggests that aeolian mineral 

sorting may have preferentially enriched the Emerson 

Plateau Stimson in mafic minerals. Based on previous 

studies of the mafic-felsic mineral sorting regime in 

Martian [14] and terrestrial basaltic dune sands, this 

infers a net sediment transport direction from the 

Naukluft Plateau in the SW to the Emerson Plateau in 

the NE.  

Conclusions: ChemCam derived bulk composi-

tions of the Stimson formation sandstone show that 

these ancient aeolian dune deposits are largely uniform 

in composition, though subtle variations in MgO, 

Al2O3, Na2O and K2O occur between localities. A clus-

ter analysis of the constrained Stimson dataset revealed 

seven clusters, four of which relate to different propor-

tions of mafic and felsic minerals analysed by Chem-

Cam. In general, the Emerson Plateau is shown to pos-

sess a greater proportion of mafic mineral clusters rela-

tive to the Naukluft Plateau. Based on the aeolian min-

eral sorting regime for basaltic environments, this sug-

gests a SW to NE paleo-net sediment transport direc-

tion, which in turn would indicate a NE prevailing 

wind direction at the time of deposition. The results of 

this geochemical study support the sedimentologically 

derived paleonet sediment transport direction by [6].  
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