47 research outputs found

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31

    Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    No full text
    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external façades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west façades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered.Solar water-heating Solar thermal collector Plant simulation Renewable energy

    A Comparative Study of PV Glazing Performance in Warm Climate

    No full text

    In vivo pro- and anti-inflammatory cytokines in normal and patients with rheumatoid arthritis

    No full text
    Annals of the Academy of Medicine Singapore36296-9
    corecore