114 research outputs found

    Habitat islands in a sea of urbanisation

    Get PDF
    Cities can provide important habitat for wildlife conservation. Many species do not make much use of anthropogenic resources, but instead are largely reliant on natural habitat remaining within a matrix of urban development, and are engulfed by encroaching housing development. Understanding which factors influence their presence and activities will allow us to manage these habitat remnants for biodiversity conservation. To this aim, we carried out a field survey recording evidence of quenda (Isoodon obesulus fusciventer) foraging digs over 106 reserves managed by the City of Mandurah, the fastest growing regional city in Australia. We identified vegetation extent and condition as primary factors correlated with the presence of quenda digging activity. In addition, the extent of canopy cover and amount of woody debris are important habitat variables to quenda, while there was a negative correlation with access to the reserves by domestic dogs (Canis familiaris). Although we included a range of urbanisation measures in the analyses (including the amount of roads nearby to each reserve, the distance to roads and the distance to buildings), none were correlated with quenda digging activity. This study indicates that quenda can persist in the urban landscape despite human activities, but highlights the importance of protected bushland reserves for their conservation

    Livestock guardian dog protection of free-range poultry from the red fox

    Get PDF
    Context: Predation of layer chickens is a major issue for free-range egg producers. Using livestock guardian dogs (LGD) to protect free-ranging poultry is a possible option for producers, although there is little published literature regarding how the dogs protect chickens. Aims: This case study was conducted at a free-range egg production farm in Western Australia, where red foxes (Vulpes vulpes) were a common predator of chickens prior to introducing Maremma LGD. We investigated LGD responses to experimental cues that might indicate fox incursion (fox urine and calls). Methods: Four dogs were GPS tracked and monitored using camera traps. Over the first week, experimental fox cues were set out around the paddock boundaries, alternating with ‘non-cue’ experimental control nights. We recorded whether the LGD altered (1) their space use, (2) activity patterns (movement speed), or (3) behaviour in response to these cues. We also recorded (4) distances between LGD from known sightings of foxes. Key results: The Maremmas appeared to work independently of each other, covering separate areas. There was no significant difference in overnight home range area by experimental fox cue treatment, but there was a significant (P < 0.001) treatment × dog interaction term for distance moved. Three dogs spent most of their time at night around the chicken shelters and generally increased distances moved on experimental fox cue nights. The fourth dog was more bonded to people and did not alter its movements. Paradoxically, dogs rested more and barked less on experimental fox cue nights; however, we recorded foxes on camera traps placed around the chicken shelters on 17 of the 23 nights of monitoring, and the high background activity level of foxes on this property compromised our experimental control (nights without experimental fox cues). The dogs did not move towards known fox sightings. Conclusions: The Maremmas in this trial closely guarded the chicken shelters rather than maintaining the entire paddock as a predator-exclusion zone. Implications: Understanding how guardian dogs behave when challenged by potential predators will help increase producers’ confidence in the efficacy of these dogs as a viable method to protect livestock from predation threat

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂ­a (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog

    Overview of the JET results in support to ITER

    Get PDF

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≀ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level

    Spatial analysis of limiting resources on an island: diet and shelter use reveal sites of conservation importance for the Rottnest Island quokka

    No full text
    Context. For conservation of any species, we need baseline data that will guide conservation planning strategies. Identifying plant resources used by animal species for food and shelter is the first important step towards fauna conservation. The second step is to determine the extent and distribution of these resources and thus identify prime habitat or habitat that could be improved through suitable management actions. This information provides the necessary spatial targeting required to make the most of few resources and a shortage of time. Aims. Applying this model approach, we identified plant species used as food or shelter resources by the conservationally significant quokka (Setonix brachyurus) across Rottnest Island, Western Australia in the aftermath of the hottest and driest summer on record. Methods. Dietary analysis was carried out using microhistological examination of plant cuticle remains from faecal samples for 67 locations across the island. Plants acting as diurnal rest shelters (n≀73 sites) were identified through observation of individuals flushed during surveys. Identifying key resources requires both a comprehensive analysis of the current use, as well as knowledge of availability of resources to determine selectivity. We therefore compared food plants or rest sites with a comprehensive survey of floristic diversity and abundance for 210 stratified-randomly located sites across the island. Key results. We identified eight plant species that quokkas fed on preferentially and identified four plant species that were the principal shelter sites. We then used hyperspectral remote sensing data to map the distribution of these plant species to quantify their distribution and identify key habitat areas. Conclusions. Understanding resource limitation over the most physiologically challenging time of the year provides important information for quokka conservation. Quokkas prefer Malvaceae species as food plants, and use dense, abundant shrubs for shelter. Implications. Quokkas appear to have shifted their use of food plants since a previous study (50 years ago), likely reflecting modification of island vegetation due to anthropogenic influences, fire and herbivory over time. In the face of changing climate, this information will serve as an important guide towards conservation management actions on the island (e.g. future planning of revegetation and habitat protection/enhancement)

    Foxes at your front door? Habitat selection and home range estimation of suburban red foxes (Vulpes vulpes)

    Get PDF
    The red fox (Vulpes vulpes) is one of the most adaptable carnivorans, thriving in cities across the globe. We used GPS-tracking of five suburban foxes across high-density residential suburbs of Perth, Western Australia to quantify (1) their habitat selection and (2) home range area. All five foxes showed statistically significant avoidance of residential locations (p < 0.001) and preference for parkland (p < 0.001), with native vegetation reserves, golf courses, and water reserves showing disproportionately greater use. Landuse category also influenced their movements, with foxes moving quickest (i.e., commuting) in proximity to roads and slowest (i.e., foraging) when they were further from roads. Three females had core home ranges (50% autocorrelated-corrected kernel density estimate; AKDEc) averaging 37 ± 20 ha or 95% AKDEc averaging 208 ± 196 ha. One male had a 95 ha core home range and 349 ha 95% AKDEc but the other male covered an area ~ 20 times this: using a 371 ha core home range and 7,368 ha 95% AKDEc. The extensive movement patterns we describe are likely to be common for urban foxes, with half of published home range estimates for urban foxes (principally based on VHF data) excluding data for ‘lost’ individuals or animals that showed ‘excursions’. It is likely that the home range estimates for these urban exploiters have therefore been grossly underestimated to date. Further application of GPS trackers that allow remote download will vastly improve our understanding of habitat preference and exploitation of resources by urban foxes
    • 

    corecore