1,686 research outputs found

    Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths

    Get PDF
    Background: Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods: In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results: Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions: Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease. Š 2011 Yende et al

    The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation

    Get PDF
    The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the ΟMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous ΟMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. Š 2013 Kozakiewicz et al

    Photocatalytic activity of nanostructured anatase coatings obtained by cold gas spray

    Get PDF
    This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS)supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide

    Predictor variables and screening protocol for depressive and anxiety disorders in cancer outpatients

    Get PDF
    Background Cancer patients are at increased risk of persistent depressive and anxiety symptoms and disorders compared to the general population. However, these issues are not always identified, which may worsen the prognosis and increase morbidity and mortality. Therefore, the objectives of this study are to identify predictor variables (demographic and clinical) for the development of mood and anxiety disorders in cancer outpatients and to propose a probabilistic screening protocol considering these variables and certain standardized screening instruments. Methods A total of 1,385 adults, of both genders, receiving outpatient cancer care were evaluated using a questionnaire and screening instruments. Thereafter, 400 of these subjects responded to the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID-IV) by telephone to confirm or rule out the presence of a Current Major Depressive Episode (CMDE) or Anxiety Disorder (AD). Results Of the patients surveyed, 64% met the criteria for CMDE and 41% for AD. Female gender was found to be a risk factor for both disorders, and the presence of previous psychiatric history and marital status (divorced and widowed) were risk factors for anxiety disorders. When scoring above the recommended cutoff score, the screening instruments also indicated a risk of the studied disorders. Based on these findings, a screening protocol and nomograms were created for the quantification, combination and probabilistic estimate of risk, with accuracy indicators >0.68. Conclusion The prevalence rates for the disorders under study are extremely high in cancer patients. The use of the proposed protocol and nomogram can facilitate rapid and wide screening, thus refining triage and supporting the establishment of criteria for referral to mental health professionals, so that patients can be properly diagnosed and treated.info:eu-repo/semantics/publishedVersio

    Examining assumptions regarding valid electronic monitoring of medication therapy: development of a validation framework and its application on a European sample of kidney transplant patients

    Get PDF
    BACKGROUND: Electronic monitoring (EM) is used increasingly to measure medication non-adherence. Unbiased EM assessment requires fulfillment of assumptions. The purpose of this study was to determine assumptions needed for internal and external validity of EM measurement. To test internal validity, we examined if (1) EM equipment functioned correctly, (2) if all EM bottle openings corresponded to actual drug intake, and (3) if EM did not influence a patient's normal adherence behavior. To assess external validity, we examined if there were indications that using EM affected the sample representativeness. METHODS: We used data from the Supporting Medication Adherence in Renal Transplantation (SMART) study, which included 250 adult renal transplant patients whose adherence to immunosuppressive drugs was measured during 3 months with the Medication Event Monitoring System (MEMS). Internal validity was determined by assessing the prevalence of nonfunctioning EM systems, the prevalence of patient-reported discrepancies between cap openings and actual intakes (using contemporaneous notes and interview at the end of the study), and by exploring whether adherence was initially uncharacteristically high and decreased over time (an indication of a possible EM intervention effect). Sample representativeness was examined by screening for differences between participants and non-participants or drop outs on non-adherence. RESULTS: Our analysis revealed that some assumptions were not fulfilled: 1) one cap malfunctioned (0.4%), 2) self-reported mismatches between bottle openings and actual drug intake occurred in 62% of the patients (n = 155), and 3) adherence decreased over the first 5 weeks of the monitoring, indicating that EM had a waning intervention effect. CONCLUSION: The validity assumptions presented in this article should be checked in future studies using EM as a measure of medication non-adherence

    Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    Get PDF
    Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50–200 nm and the length from tens to hundreds of micrometers. The vapor–solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core–shell interface

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore