14 research outputs found

    Towards Orientation Learning and Adaptation in Cartesian Space

    Get PDF
    As a promising branch of robotics, imitation learning emerges as an important way to transfer human skills to robots, where human demonstrations represented in Cartesian or joint spaces are utilized to estimate task/skill models that can be subsequently generalized to new situations. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. Despite recent advances in learning orientations from demonstrations, several crucial issues have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this article, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-points and end-points), where both orientation and angular velocity are considered. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations, which allows for learning orientation trajectories associated with high-dimensional inputs. In addition, we extend our approach to the learning of quaternions with angular acceleration or jerk constraints, which allows for generating smoother orientation profiles for robots. Several examples including experiments with real 7-DoF robot arms are provided to verify the effectiveness of our method

    Generalized Orientation Learning in Robot Task Space

    Get PDF
    In the context of imitation learning, several approaches have been developed so as to transfer human skills to robots, with demonstrations often represented in Cartesian or joint space. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. However, several crucial issues arising from learning orientations have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this paper, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-point and end-point), where both orientation and angular velocity are addressed. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations. Several examples including comparison with the state-of-the-art dynamic movement primitives are provided to verify the effectiveness of our method

    Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives

    Get PDF
    During the past few years, probabilistic approaches to imitation learning have earned a relevant place in the literature. One of their most prominent features, in addition to extracting a mean trajectory from task demonstrations, is that they provide a variance estimation. The intuitive meaning of this variance, however, changes across different techniques, indicating either variability or uncertainty. In this paper we leverage kernelized movement primitives (KMP) to provide a new perspective on imitation learning by predicting variability, correlations and uncertainty about robot actions. This rich set of information is used in combination with optimal controller fusion to learn actions from data, with two main advantages: i) robots become safe when uncertain about their actions and ii) they are able to leverage partial demonstrations, given as elementary sub-tasks, to optimally perform a higher level, more complex task. We showcase our approach in a painting task, where a human user and a KUKA robot collaborate to paint a wooden board. The task is divided into two sub-tasks and we show that using our approach the robot becomes compliant (hence safe) outside the training regions and executes the two sub-tasks with optimal gains.Comment: Published in the proceedings of IROS 201

    A probabilistic framework for learning geometry-based robot manipulation skills

    Get PDF
    Programming robots to perform complex manipulation tasks is difficult because many tasks require sophisticated controllers that may rely on data such as manipulability ellipsoids, stiffness/damping and inertia matrices. Such data are naturally represented as Symmetric Positive Definite (SPD) matrices to capture specific geometric characteristics of the data, which increases the complexity of hard-coding them. To alleviate this difficulty, the Learning from Demonstration (LfD) paradigm can be used in order to learn robot manipulation skills with specific geometric constraints encapsulated in SPD matrices. Learned skills often need to be adapted when they are applied to new situations. While existing techniques can adapt Cartesian and joint space trajectories described by various desired points, the adaptation of motion skills encapsulated in SPD matrices remains an open problem. In this paper, we introduce a new LfD framework that can learn robot manipulation skills encapsulated in SPD matrices from expert demonstrations and adapt them to new situations defined by new start-, via- and end-matrices. The proposed approach leverages Kernelized Movement Primitives (KMPs) to generate SPD-based robot manipulation skills that smoothly adapt the demonstrations to conform to new constraints. We validate the proposed framework using a couple of simulations in addition to a real experiment scenario

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    A Modified Cartesian Space DMPs Model for Robot Motion Generation

    No full text
    corecore