2,911 research outputs found
Protective effects of lycium barbarum polysaccharides on cerebral edema and blood-brain barrier disruption after ischemic stroke
Young Investigators Symposium I (Y3) - Di YangBACKGROUND: Ischemic stroke is a destructive cerebrovascular disease and one of the leading causes of death worldwide. The long term disability after stroke induces heavy burden both to the patients and the society. Yet, no effective neuroprotective agents are available. The polysaccharides extracted from the fruits of wolfberry, Lycium barbarum (LBP), showed neuroprotective and immune-modulative functions. We aim to evaluate the protective effects of LBP in experimental stroke using a focal cerebral ischemia/reperfusion (I/R) model. METHODS: C57BL/6N mice were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Prior to ischemia induction, animals were treated with either vehicle (PBS) or LBP daily for 7 days. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement and immunohistochemical analysis as well as Western blot experiments. Evans blue (EB) extravasation experiment was performed to determine blood-brain barrier (BBB) disruption after MCAO. RESULTS: LBP treatment significantly improved neurological scores and decreased infarct size, hemispheric swelling and water content as well as reduced EB extravasation. In addition, fewer apoptotic cells were identified in the LBP-treated brains by TUNEL assay. Immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were also significantly decreased in LBP-treated brains. We further observed a reduction of nuclear factor-κB translocation and IκB expression after LBP treatment. CONCLUSION: Seven-day LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin water channel up-regulation and glial activation. The protective effects of LBP might partially act through its anti-inflammatory effects. The present study suggests that LBP may be used as a preventive neuroprotectant for ischemic stroke.postprin
Communities as Well Separated Subgraphs With Cohesive Cores: Identification of Core-Periphery Structures in Link Communities
Communities in networks are commonly considered as highly cohesive subgraphs
which are well separated from the rest of the network. However, cohesion and
separation often cannot be maximized at the same time, which is why a
compromise is sought by some methods. When a compromise is not suitable for the
problem to be solved it might be advantageous to separate the two criteria. In
this paper, we explore such an approach by defining communities as well
separated subgraphs which can have one or more cohesive cores surrounded by
peripheries. We apply this idea to link communities and present an algorithm
for constructing hierarchical core-periphery structures in link communities and
first test results.Comment: 12 pages, 2 figures, submitted version of a paper accepted for the
7th International Conference on Complex Networks and Their Applications,
December 11-13, 2018, Cambridge, UK; revised version at
http://141.20.126.227/~qm/papers
Analysis of cod-liver oil adulteration using Fourier Transform Infrared (FTIR) spectroscopy.
Analysis of the adulteration of cod-liver oil with much cheaper oil-like animal fats has become attractive in recent years. This study highlights an application of Fourier transform infrared (FTIR) spectroscopy as a nondestructive and fast technique for the determination of adulterants in cod-liver oil. Attenuated total reflectance measurements were made on pure cod-liver oil and cod-liver oil adulterated with different concentrations of lard (0.5–50% v/v in cod-liver oil). A chemometrics partial least squares (PLS) calibration model was developed for quantitative measurement of the adulterant. Discriminant analysis method was used to classify cod-liver oil samples from common animal fats (beef, chicken, mutton, and lard) based on their infrared spectra. Discriminant analysis carried out using seven principal components was able to classify the samples as pure or adulterated cod-liver oil based on their FTIR spectra at the selected fingerprint regions (1,500–1,030 cm−1)
Anomaly/Transport in an Ideal Weyl gas
We study some of the transport processes which are specific to an ideal gas
of relativistic Weyl fermions and relate the corresponding transport
coefficients to various anomaly coefficients of the system. We propose that
these transport processes can be thought of as arising from the continuous
injection of chiral states and their subsequent adiabatic flow driven by
vorticity. This in turn leads to an elegant expression relating the anomaly
induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.Comment: 35 pages, JHEP forma
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Optimality of mutation and selection in germinal centers
The population dynamics theory of B cells in a typical germinal center could
play an important role in revealing how affinity maturation is achieved.
However, the existing models encountered some conflicts with experiments. To
resolve these conflicts, we present a coarse-grained model to calculate the B
cell population development in affinity maturation, which allows a
comprehensive analysis of its parameter space to look for optimal values of
mutation rate, selection strength, and initial antibody-antigen binding level
that maximize the affinity improvement. With these optimized parameters, the
model is compatible with the experimental observations such as the ~100-fold
affinity improvements, the number of mutations, the hypermutation rate, and the
"all or none" phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate
in vivo, results from a tradeoff between accumulating enough beneficial
mutations and avoiding too many deleterious or lethal mutations. The optimal
selection strength evolves as a balance between the need for affinity
improvement and the requirement to pass the population bottleneck. These
findings point to the conclusion that germinal centers have been optimized by
evolution to generate strong affinity antibodies effectively and rapidly. In
addition, we study the enhancement of affinity improvement due to B cell
migration between germinal centers. These results could enhance our
understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
- …
