1,706 research outputs found
Disruption of a Proto-Planetary Disk by the Black Hole at the Milky Way Centre
Recently, an ionized cloud of gas was discovered plunging toward the
supermassive black hole, SgrA*, at the centre of the Milky Way. The cloud is
being tidally disrupted along its path to closest approach at ~3100
Schwarzschild radii from the black hole. Here, we show that the observed
properties of this cloud of gas can naturally be produced by a proto-planetary
disk surrounding a low-mass star, which was scattered from the observed ring of
young stars orbiting SgrA*. As the young star approaches the black hole, its
disk experiences both photo-evaporation and tidal disruption, producing a
cloud. Our model implies that planets form in the Galactic centre, and that
tidal debris from proto-planetary disks can flag low mass stars which are
otherwise too faint to be detected.Comment: Accepted to Nature Communications; new Figure 4b provides predicted
  Br-gamma emission as a function of tim
The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review.
INTRODUCTION: Ready-to-eat meals sold by food outlets that are accessible to the general public are an important target for public health intervention. We conducted a systematic review to assess the impact of such interventions. METHODS: Studies of any design and duration that included any consumer-level or food-outlet-level before-and-after data were included. RESULTS: Thirty studies describing 34 interventions were categorized by type and coded against the Nuffield intervention ladder: restrict choice = trans fat law (n = 1), changing pre-packed children's meal content (n = 1) and food outlet award schemes (n = 2); guide choice = price increases for unhealthier choices (n = 1), incentive (contingent reward) (n = 1) and price decreases for healthier choices (n = 2); enable choice = signposting (highlighting healthier/unhealthier options) (n = 10) and telemarketing (offering support for the provision of healthier options to businesses via telephone) (n = 2); and provide information = calorie labelling law (n = 12), voluntary nutrient labelling (n = 1) and personalized receipts (n = 1). Most interventions were aimed at adults in US fast food chains and assessed customer-level outcomes. More 'intrusive' interventions that restricted or guided choice generally showed a positive impact on food-outlet-level and customer-level outcomes. However, interventions that simply provided information or enabled choice had a negligible impact. CONCLUSION: Interventions to promote healthier ready-to-eat meals sold by food outlets should restrict choice or guide choice through incentives/disincentives. Public health policies and practice that simply involve providing information are unlikely to be effective
Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim
Patinas naturally formed on archaeological bronze alloys were characterized using light microscopy (LM), micro energy dispersive X-ray fluorescence analysis (mu-EDXRF), time of flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscopy in combination with energy dispersive X-ray microanalysis (SEM/EDX). The examinations carried out on cross-sections of samples have shown that in all samples the copper content in the corrosion layer is lower than in the bulk, while an increase of tin and lead could be observed. Two different types of corrosion were found: first type, a corrosion formation leading to a three layer structure was observed on lead bronze. The outer layer consists mainly of Cu(II) compounds and soil material, followed by a fragmented layer of cuprous oxide and the surface layer of the alloy, where a depletion of copper and an enrichment of tin and high amounts of Cl could be detected, The second type of corrosion is characterized by a two layer structure on the tin bronze sample consisting of an outer layer with copper containing corrosion products and a layer with cracks, which reveals a depletion of copper whereas tin and lead are enriched. Also high amounts of Si were detected in this surface layer
Polarized disk emission from Herbig AE/BE stars observed using Gemini planet imager: HD 144432, HD 150193, HD 163296, and HD 169142
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using
the Gemini Planet Imager (GPI), along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H-band, finding
the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J- and H-band surface brightness profiles, suggesting that the di↵erential color of the two rings could come from reddened starlight traversing the inner wall and may not require di↵erences in grain properties. In addition, we clearly detect an elongated, o↵-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, cospatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.Exeter’s STFC Consolidated Grant (ST/J001627/1). SK acknowledges support from an STFC Rutherford Fellowship
(ST/J004030/1) and a European Research Council (ERC) Starting Grant (Grant agreement No 639889).
This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of
the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology,
funded by the National Aeronautics and Space Administration and the National Science Foundation. Based on
observations obtained at the Gemini Observatory (programs GS-2014A-SV-412, GS-2015A-Q-49), which is operated
by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on
behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council
(Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina), and Ministrio da
Cincia, Tecnologia e Inovao (Brazil)
Probing the close environment of young stellar objects with interferometry
The study of Young Stellar Objects (YSOs) is one of the most exciting topics
that can be undertaken by long baseline optical interferometry. The magnitudes
of these objects are at the edge of capabilities of current optical
interferometers, limiting the studies to a few dozen, but are well within the
capability of coming large aperture interferometers like the VLT
Interferometer, the Keck Interferometer, the Large Binocular Telescope or
'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes
the very close environment of young stars, down to a tenth of an astronomical
unit. In this paper, I review the different aspects of star formation that can
be tackled by interferometry: circumstellar disks, multiplicity, jets. I
present recent observations performed with operational infrared
interferometers, IOTA, PTI and ISI, and I show why in the next future one will
extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large
  Telescope Interferometer Challenges for the future
Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY
It has been argued that rather generic features of string-inspired
inflationary theories with low-energy supersymmetry (SUSY) make it difficult to
achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the
gravitino mass in the SUSY-breaking vacuum state. We present a class of
string-inspired supergravity realizations of chaotic inflation where a simple,
dynamical mechanism yields hierarchically small scales of post-inflationary
supersymmetry breaking. Within these toy models we can easily achieve small
ratios between m_{3/2} and the Hubble scale of inflation. This is possible
because the expectation value of the superpotential  relaxes from large to
small values during the course of inflation. However, our toy models do not
provide a reasonable fit to cosmological data if one sets the SUSY-breaking
scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent
tension between high-scale inflation and low-scale supersymmetry breaking in
string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor
  changes, version to appear in JHE
Monotonicity of Fitness Landscapes and Mutation Rate Control
A common view in evolutionary biology is that mutation rates are minimised.
However, studies in combinatorial optimisation and search have shown a clear
advantage of using variable mutation rates as a control parameter to optimise
the performance of evolutionary algorithms. Much biological theory in this area
is based on Ronald Fisher's work, who used Euclidean geometry to study the
relation between mutation size and expected fitness of the offspring in
infinite phenotypic spaces. Here we reconsider this theory based on the
alternative geometry of discrete and finite spaces of DNA sequences. First, we
consider the geometric case of fitness being isomorphic to distance from an
optimum, and show how problems of optimal mutation rate control can be solved
exactly or approximately depending on additional constraints of the problem.
Then we consider the general case of fitness communicating only partial
information about the distance. We define weak monotonicity of fitness
landscapes and prove that this property holds in all landscapes that are
continuous and open at the optimum. This theoretical result motivates our
hypothesis that optimal mutation rate functions in such landscapes will
increase when fitness decreases in some neighbourhood of an optimum, resembling
the control functions derived in the geometric case. We test this hypothesis
experimentally by analysing approximately optimal mutation rate control
functions in 115 complete landscapes of binding scores between DNA sequences
and transcription factors. Our findings support the hypothesis and find that
the increase of mutation rate is more rapid in landscapes that are less
monotonic (more rugged). We discuss the relevance of these findings to living
organisms
Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England
Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein
Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma
Concern has been raised regarding the potential contributions of veterinary antimicrobial use to increasing levels of resistance in bacteria critically important to human health. Canine pyoderma is a frequent, often recurrent diagnosis in pet dogs, usually attributable to secondary bacterial infection of the skin. Lesions can range in severity based on the location, total area and depth of tissue affected and antimicrobial therapy is recommended for resolution. This study aimed to describe patient signalment, disease characteristics and treatment prescribed in a large number of UK, primary-care canine pyoderma cases and to estimate pyoderma prevalence in the UK vet-visiting canine population
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
- …
