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1 Introduction

Inflation [1–3] can solve both the horizon and flatness problems of cosmology in an elegant

and minimal way (for a recent pedagogical review, see [4]). Inflationary theories can also

naturally explain the primordial density fluctuations that eventually collapse to give rise

to the large-scale structure we see today.

However, all known classes of inflationary models are potentially sensitive to Planck-

suppressed corrections to the inflaton Lagrangian, which can yield slow-roll parameters of

O(1), stopping inflation. While this sensitivity to high-scale physics is true of all inflation-

ary theories, a particularly stark example of UV sensitivity arises in so-called “large-field

models,” where the inflaton enjoys a super-Planckian excursion in field space during infla-

tion. Such models are of special interest because it is only in such models that one may

obtain gravitational wave signatures that are observable in the forseeable future [5] (for

a thorough discussion, see [6]). But gaining control of the inflaton Lagrangian over this

large range of field space clearly demands detailed knowledge of the structure of an infinite

series of potential Planck-suppressed terms.

One possible UV completion of particle physics and gravity is string theory. In re-

cent years, as our understanding of the details of string compactification has grown, it has

become a realistic possibility to enumerate precise corrections to candidate inflaton La-

grangians in various scenarios. Recent results in this direction include those of [7, 8], where

possible quantum gravity corrections to D3-brane inflation models in warped throat geome-

tries are determined, and those of [9, 10], where a shift symmetry protects large-field infla-

tion in theories with high-scale supersymmetry breaking.1 The UV sensitivity of all infla-

tion models, and the especially stark sensitivity of models which predict observable gravita-

tional waves, provides the principal motivation for trying to embed inflation in string theory.

1See [11–14] for other papers attempting to use shift symmetries to justify large-field inflation in string

theory, and [15–19] for more general reviews.
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A second major paradigm in theoretical physics is supersymmetry (see e.g. [20–22]).

Many theorists believe that supersymmetry is the leading candidate to stabilize the Higgs

mass and explain the physics of electroweak symmetry breaking. String compactifications

very naturally give rise to models with low-energy supersymmetry (though this is by no

means known to be a prediction of the framework); the low-energy theory is then a 4D N =

1 supergravity. Therefore, in evaluating statements about the space of inflationary models

in string theory, and in particular statements that correlate inflationary observables with

particle physics observables directly tied to supersymmetry breaking, it is useful to first con-

sider what is and is not possible in the context of string-inspired low-energy supergravities.

Recently, a striking claim about the relation between the two most basic observables in

inflation and in theories of supersymmetry and its breaking has been put forward [23, 24].2

The most fundamental observable in inflation is the scale of inflation

V = 3M2
PH2 (1.1)

(or equivalently, the Hubble constant during inflation, H). It directly controls the tensor

amplitude [5], and is a major factor in setting the scale of density perturbations. The pri-

mary observable in any realistic supergravity model is the scale of supersymmetry breaking,

which is captured by the gravitino mass m3/2. Quantitatively, one has:

m2
3/2 ≈ eK |W |2

M4
P

(1.2)

where W is the expectation value of the superpotential and K is that of the Kähler potential

(and the two appear above in a combination which is invariant under Kähler transforma-

tions, as expected).

The authors of [23] study possibilities for inflation in one of the simplest toy models of

moduli stabilization and supersymmetry breaking known in string theory [26]. They claim

that within this class of models, very simple arguments (which we shall review in section 2)

lead to the conclusion that one must have

H ≤ m3/2 . (1.3)

The basic extra microscopic requirement that leads to this constraint is that of volume mod-

ulus stabilization (as we shall explain in detail in section 2). This is a new microscopic re-

quirement that must be considered in inflationary models that arise in an extra-dimensional

setting, like that of string theory; it is a priori only indirectly related to traditional ques-

tions of 4D inflaton dynamics, like the flatness of a candidate inflaton potential.

We note that typical supersymmetric models of particle physics have m3/2 ≤ TeV

(sometimes far lower, coming all the way down to 10−2 eV in models of low-scale gauge

mediation). In contrast, typical models of inflation have a characteristic energy scale

V during inflation that often approaches the GUT scale. All models with observable

gravitational waves predict H ≥ 1014 GeV, and very few models of any sort have been

2See also [25] which noted tensions cropping up between low-scale SUSY breaking and high-scale inflation.
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proposed with H smaller than the values of m3/2 typical in low-scale gauge mediation (recall

that one must do baryogenesis etc. sometime after inflation). Therefore, the constraint

eq. (1.3) is rather unwelcome. It has been further argued that while one can (clearly) find

more general low-energy Lagrangians generalizing that of [26], that allow one to circumvent

eq. (1.3), rather significant fine-tuning in the moduli-stabilizing sector is required to obtain

models that robustly allow H ≫ m3/2.

In this paper, we examine the conclusion of [23] by studying possibilities for large-field

inflation in low-energy theories that incorporate the same model of moduli stabilization,

but vary the nature of the inflationary sector. We do not work in the full framework of

string theory, but we do incorporate all of the features of low-energy string models that

led to the tension in [23]. We find that a wide class of large-field models can neverthe-

less arise in this framework, with m3/2 ≪ H, and without significant fine-tuning of the

moduli-stabilizing sector.3

We emphasize that the problem described in [23], and solved there only by significant

fine-tuning in the moduli-stabilizing sector, is different from the problem of obtaining

a stringy inflation sector with a flat inflaton potential; it comes instead largely from a

constraint to avoid decompactification of the extra dimensions of string theory. It is this

new problem that is the focus of our investigation.

2 The Kallosh-Linde problem

The Kallosh-Linde (KL) problem was originally described as follows (for a more complete

discussion, see the original paper [23]).4 For concreteness, we imagine working in type IIB

string theory on a Calabi-Yau orientifold, and denote its volume modulus field by T , with

σ ≡ ReT (and the imaginary part being comprised of an axion). In the scenario of [26],

the Kähler potential K and the superpotential W (in the effective theory below the scale

where complex structure moduli are stabilized by fluxes) take the form

K = −3 ln(T + T̄ ) (2.1)

W = W0 + Ae−aT . (2.2)

W0 is the value of the flux superpotential at the minimum for complex structure moduli,

and the exponential term in W arises from non-perturbative effects. The resulting scalar

potential has an AdS minimum, which is supersymmetric. The F -terms vanish, and de-

noting the value of the superpotential in the supersymmetric AdS vacuum by 〈W 〉0 (see

eq. (14) of [26]), the potential has a depth of

|VAdS| = 3eK |〈W 〉0|2. (2.3)

One then further incorporates some effects of supersymmetry breaking to lift the AdS

minimum to a metastable de Sitter minimum. There are many ways that one can imagine

3For other work focused on related issues, see e.g. [27–34], and for new ideas about using the universal

supergravity Goldstino multiplet for inflation, see [35].
4To simplify the equations presented, we will henceforth set the reduced Planck mass MP = 1.
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incorporating supersymmetry breaking in these constructions; for a discussion of some of

these, see the reviews [36, 37]. The upshot in many cases is that one obtains a correction

to the potential of the form ∆V ∼ C
σ2 , where C can be parametrically small in string or

Planck units. This additive form of the correction is obviously a crude model of a more in-

tricate interaction between the SUSY-breaking sector and the other dynamics. Such a form

should be (approximately) justified in cases where the SUSY breaking sector only couples

energetically to other fields by parametrically smaller (e.g. Planck-suppressed) terms.

For appropriate choices of C, this can “uplift” the AdS minimum at σmin to a de Sitter

minimum (a similar but different power-law dependence of ∆V on the volume modulus

will also work; typical sources of energy density in string theory indeed scale in this way

with the volume modulus, when one works in 4D Einstein frame). The correction factor is

small enough that the new minimum occurs at σ0 ≈ σmin. The smallness of the correction

also guarantees that the barrier height preventing decay of the de Sitter vacuum to the

vacuum with V = 0 at σ = ∞, denoted VB , is

VB ≃ |VAdS|. (2.4)

Given the value of the present-day cosmological constant, the potential at the end of

inflation must effectively vanish (giving rise to a vacuum energy density of order 10−120 in

Planck units) at the minimum. The gravitino mass is given by eq. (1.2). In the simplest

case where SUSY is broken by the F -term of some chiral multiplet Z,

V = GZZ̄ |FZ |2 − 3eK |W |2, (2.5)

so a vanishing V implies that |FZ |2 ≡ |eK/2DZW |2 = 3eK |〈W 〉0|2 (here we assume that Z

is a canonical field so GZZ̄ = 1). Hence the F -terms, which measure the scale of SUSY

breaking, are of the same order as eK/2|〈W 〉0| = m3/2, and so the gravitino mass is a direct

measure of the scale of SUSY breaking. This remains true in more complicated models.

To summarize, the scale of SUSY breaking is directly tied to m3/2 and

m2
3/2 = eK |〈W 〉0|2 (2.6)

when the cosmological constant is very small (as it is today).

On the other hand, we now argue that VB also imposes an upper bound on the mag-

nitude of H2. Let us modify the scenario of [26] to include inflation, by adding an inflaton

field Φ. We assume that T modulus stabilization works in the same way as above at the end

of inflation, when Φ vanishes. It follows from this that the final VB is still as in eq. (2.4).

Now, let us consider the effects of the inflaton contributions to the potential during

inflation, when

V = eK(GΦΦ̄|DΦW |2 + GT T̄ |DT W |2 − 3|W |2) +
C

σ2
. (2.7)

We note that if the new terms due to the inflaton in eq. (2.7) are much larger than the

barrier height VB , we can expect a problem with decompactification, since for all known

inflaton candidates V (Φ) ∼ eKGΦΦ̄|DΦW |2 vanishes as a power of 1/σ at large σ. (A

– 4 –
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typical value of the power is 1/σ3 from the prefactor eK). In other words, the eK |DΦW |2
term is effectively an uplifting term, similar in functional form to the D3 contribution in

the scenario of [26]. Empirically, it has been argued that to prevent the |FΦ|2 terms from

overuplifting the potential and destroying the minimum in the volume modulus field, we

need [23]

eK |DΦW |2 . O(10)VB . (2.8)

Thus, as H2 = V
3 during inflation,

H2 =
V

3
∼ eK |DΦW |2 . O(10)VB ≃ O(10)|VAdS|, (2.9)

where the last approximate equality is from eq. (2.4). So, under this set of assumptions,

VB is related to both the gravitino mass, and the maximal possible scale of inflation.

It is now easy to formulate the KL problem. If we assume that the σ field remains at

its minimum during inflation, then the scale of inflation is given by (using eq. (2.3))

H2 . O(10)VB ≃ O(10)|VAdS| ∼ eK |〈W 〉0|2 ∼ m2
3/2, (2.10)

which is just eq. (1.3) from the introduction (with MP = 1). This equation leads to the

statement in [23] that, due to the need to maintain stability of the volume modulus during

inflation, inflationary models in string theory should generically be expected to satisfy

Hinflation ≤ mtoday
3/2 . (2.11)

This ties the scale of SUSY breaking to the scale of inflation. For many high-scale infla-

tionary models this yields m3/2 ∼ 1010 GeV in the simplest scenario of [26], many orders of

magnitude greater than the 1 TeV value predicted by typical supersymmetric models. The

KL problem suggests that it may be difficult to find inflation models that can accommodate

both a potential future observation of tensor modes from inflation and a light gravitino.

Kallosh and Linde did propose a way to circumvent this problem. They noted that

eq. (1.3) was derived from the fact that the post-inflationary near-Minkowski de Sitter

minimum cannot be further uplifted by too large a factor (more specifically, the uplifting

cannot greatly exceed VB) [23]. Hence, if it is possible to free the uplifting limit from VB ,

then eq. (1.3) becomes invalid, eliminating the problem. To accomplish this, Kallosh and

Linde proposed to add a second exponential in the σ field to W , thus using the racetrack

mechanism to stabilize σ. By choosing the coefficients of the exponentials carefully, they

were able to completely decouple the potential barrier height from the scale of uplifting.

Nevertheless, although this model indeed resolves the problem, it requires significant fine-

tuning (for reasons which are distinct from the typical need to achieve a flat inflaton

potential; this tune is invoked simply to avoid decompactification during inflation).

There is, however, a different approach that can be taken to circumvent the KL

problem. Rather than trying to free the uplifting limit from |〈W 〉0|, we simply allow

〈W 〉 = 〈W (Φ)〉 to vary as a function of the inflaton Φ during the last 60 e-folds of in-

flation. During inflation, we imagine that 〈W 〉 is quite large, and the effective barrier to

decompactification is high. However, at the end of inflation, 〈W 〉 = 〈W 〉0 is also tied to the

– 5 –
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scale of SUSY breaking through m3/2 by eq. (2.6). Thus, we are led to search for models

where, during the final 60 e-folds, 〈W 〉 naturally decreases by several orders of magnitude.

If we can find such models where 〈W 〉 is large during inflation, but compatible with SUSY

breaking at intermediate scale or below at the end of inflation (so m3/2 ≤ TeV), then we

would have dynamically overcome the KL problem. Our task in the next section is to write

down such a toy model.

3 Large field inflation with small gravitino mass

In this section, we proceed to write down large-field inflation models which are general-

izations of chaotic inflation [38] with ϕ2n potential. These models are designed to avoid

decompactification even at large vevs of ϕ, and the expectation value of the superpotential

〈W 〉 varies by many orders of magnitude during inflation. As a result, the final value of

m3/2 can be much less than the Hubble scale during inflation. Because the discussion is

somewhat detailed, here we provide an overview of our strategy.

We begin in section 3.1 by writing down the simplest class of models we have found.

They include one additional field X beyond the minimal content one might expect (the T

modulus and the inflaton Φ = η+ iϕ) in any discussion of the KL problem. This additional

field X is needed to avoid very general constraints on large-field inflation in supergravity,

discussed in the insightful paper of Kawasaki, Yamaguchi and Yanagida [39]. The same field

allows us to overcome other detailed problems with keeping the T modulus stable during

inflation, which would also pose obstacles in a large-field model with only T and the inflaton

field Φ. We explain these general constraints in detail in section 3.2, using our toy model

of section 3.1 as an illustration. In section 3.3, we then scan over the range of parameters

that are accessible in this class of models, exhibiting many models that have H ≫ m3/2.

3.1 A toy model

We begin by writing down the Kähler potential and superpotential of our toy model. As

before, we take MP = 1.

K =
1

2
(Φ + Φ̄)2 + XX̄ − γ(XX̄)2 − 3 log(T + T̄ )

W = W0 g(X) + αf(X)Φn + e−aT (3.1)

with : g(X) = 1 + O(X) and f(X) = b + X + O(X2)

Here, Φ = η + iϕ is the inflaton, X is a chiral multiplet, and T is the modulus field. The

inclusion of the quartic −γ(XX̄)2 term in the Kähler potential results in

K−1
XX̄

= (1 − 4γXX̄)−1 ≃ 1 + 4γXX̄ . (3.2)

This effectively produces a mass term for X of order ∼ |FX |2 in the scalar potential, and

forces the X field to stay near the origin until inflation has ended at Φ ∼ 1. The coefficient

of the quartic term in K we take for naturalness to be γ = O(1). Higher order terms in

XX̄ could be added to K (with the expected O(1) coefficients) and would not change our

– 6 –
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discussion. Similarly, one could replace the 1
2 (Φ + Φ̄)2 term above with a more general

function F (Φ + Φ̄) in the Kähler potential; the only important point is that F should

depend only on the real part of Φ. The possible higher order powers of (Φ + Φ̄) will drop

out in all of our considerations below, because η = Re(Φ) is frozen at zero during inflation

when ϕ has a large expectation value.

Jumping ahead, we note that during inflation the F -terms develop a hierarchy

FX ∼ eK/2〈W 〉 ∼ eK/2αΦn , FΦ ∼ FX

Φ
, FT ∼ FX

T
(3.3)

implying FX -domination during the inflationary phase (which occurs at large values of ϕ).

Then the dominant term in the scalar potential during inflation is

Vinf.(ϕ) ∼ |FX |2 ∼ α2ϕ2n . (3.4)

This form of the potential can be protected for large values of ϕ if there is a suitable shift

symmetry broken only by α; we discuss naturalness issues below. The dominant F-term

FX also yields, through the quartic X self-coupling in the Kähler potential, a ϕ-dependent

mass for X given by m2
X ∼ |FX |2 ∼ Vinf.(ϕ). This in turn guarantees that 〈X〉 ≃ 0 during

inflation, as stated before. Similarly, η is frozen to zero by the large mass it receives from

the terms ∼ eKα2ϕ2n in the scalar potential.

Regarding the constants a and b, we take b ∈
[

1/4 , 1/
√

2
]

, and we have assumed

the non-perturbative dynamics to arise from gaugino condensation, say on a stack of D7-

branes in a warped IIB flux compactification, which gives a = 2π
N . α determines the scale

of inflation, and is eventually fixed by matching the density perturbations to data if the

inflaton itself is chosen to seed the primordial curvature perturbation.

We know that |〈W 〉0| is of the order |W0|, so if we choose |W0| to be small, we will

have low-scale SUSY breaking. We should now choose our constants so that the initial

|Wi| ≡ |〈W (ϕ60, T (ϕ60),X(ϕ60))〉| ≪ 1, at the value ϕ60 of the inflaton corresponding

to 60 e-folds before the end of inflation, is many orders of magnitude larger than |W0|,
while the modulus field remains stabilized. Naturally, not all choices of parameter sets will

preserve the (instantaneous) minimum for T , and we must derive conditions on the allowed

values of n and W0. The constraints on these parameters arise from arguments given in [23]

(see section 2): The F -terms in V act effectively as an uplifting term. In order to prevent

decompactification, we must have, by equations (2.3), (2.4), and (2.8) with the inclusion

of the FX term,

|FΦ|2 + |FX |2 . O(10)3eK |〈W 〉|2. (3.5)

We neglected the FT term as it is dominated by either FΦ or FX . Rewriting the above

expression, we have
√

|F 2
Φ| + |F 2

X |
√

3eK/2|〈W 〉|
∼ O(1), (3.6)

where we replaced O(10) with O(1) to be conservative in our estimates. We will see that

applying this generic relation to our specific model will produce a constraint on n.

– 7 –
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Naturalness. Let us now justify the form of the superpotential above; we claim that it

can be made natural in the sense of ’t Hooft. We imagine that there is an R-symmetry

under which the inflaton field Φ carries R-charge 2
n , with X neutral. W0 itself serves as

a spurion of R-symmetry breaking as well. Therefore, the most generic superpotential

consistent with the R-symmetry can have general functions f(X) and g(X) multiplying Φn

and W0. In this setup, the Φ field also possesses a Nambu-Goldstone-like shift symmetry,

in that

Φ → Φ + iC (3.7)

with C a real constant, is a symmetry of the Kähler potential. Therefore, for simplicity,

we have also pulled an overall small coefficient α out of the superpotential term ∼ Φn.

Small α is perfectly natural, since α will serve as the spurion of shift-symmetry breaking.

While there are famously no exact global symmetries in quantum gravity [40, 41], one can

sometimes find such shift symmetries which are protected up to the level of sufficiently

small non-perturbative corrections [9, 10]. That is, the leading symmetry breaking ∼ α

is generated dynamically (with the small parameter α arising naturally either through

warping, dimensional transmutation, or instanton effects), while any further symmetry

breaking is assumed to be small enough to be negligible for our purposes.

Because of the shift symmetry in Φ (and our assumption about the nature of the

corrections above, which is justified in at least in some stringy large-field models [9, 10]), the

inflaton’s Lagrangian is “immune” to corrections even over super-Planckian distances, so

we do not need to worry about the slow-roll conditions being destroyed by such corrections.

In particular, writing out the components of the inflaton chiral supermultiplet

Φ = η + iϕ , (3.8)

we see that ϕ can be arbitrarily big without affecting K. Hence, we can explore large-field

inflation, by letting the inflaton be ϕ. For now, we are keeping both n and W0 as free

parameters. Our goal is to choose values for them such that there is a hierarchy between

〈W 〉 at the start of inflation and 〈W 〉0 (the superpotential at the end), while avoiding

decompactification by satisfying eq. (3.6).5

Since we will actually find that 〈X〉 ≪ 1 both during and after inflation in our models,

we will only need to keep the first term in the Taylor expansion of g(X) and the first two

terms in the expansion of f(X). Inclusion of further terms (with generic coefficients) would

not change our conclusions. The reason the first two terms in f are relevant will become

clear below and in section 3.2.

5Here, we are only keeping the volume modulus T in our effective field theory, while integrating out the

complex structure moduli, whose stabilization by fluxes is assumed to generate W0. We must make certain

that they are massive enough to justify integrating them out at the relevant scales. This is true, because

for compactification volumes R6
∼ (10 . . . 100)α′3, the mass and energy scales of the flux-induced moduli

potential satisfy M2

Pm2

mod ∼ Umod ∼ α′2/R6
∼ O(10 . . . 100)×Hinf even for large-field inflationary models

having Hinf ∼ 1014 GeV. This modest hierarchy allows us to infer shifts δσ of the heavy flux-stabilized

moduli δσ ∼ Vinf/Umod, which implies that corrections to the inflationary slow-roll parameters due to shifts

of these moduli vevs scale like δη ∼ ηVinf /Umod. For a more detailed argument to this effect, see e.g. the

discussions in [9, 10].

– 8 –
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Dynamics of the volume modulus T during inflation. We pause here to recapitulate

the dynamics of “uplifting” the AdS vacuum for T as in [26], to see why satisfying the

constraint eq. (3.6) is sufficient to guarantee the continued existence of an uplifted minimum

for T . We start by choosing the parameters of the setup such that the eventual minimum

for T at large ϕ occurs at σ = Re T ≫ 1. Within that regime, the fact that the main

inflationary uplifting comes from |FX |2 = eK |DXW |2 ∼ 1/σ3 acting like a D3-brane with

respect to the T -dynamics,6 shows us empirically that the actual T -minimum produced

sits at

Tmin(ϕ) ≃ T0 : DT W (ϕ)|T0
= 0 (3.9)

as long as this minimum of T is not very close to disappearing into a barrier-less inflection

point. We can use this to estimate the size of the terms in the superpotential at this

eventual minimum for T . Given that as argued above DT W (ϕ) ≃ 0 at T = Tmin(ϕ) we

have that

DT W (ϕ) ≃ 0 ⇒ e−aTmin(ϕ) ≃ 1

1 + 2
3aTmin(ϕ)

W0,eff.(Φ)

where : W0,eff.(Φ) ≡ W0 + α(b + X)Φn .

Thus demanding

|W0,eff.(Φ)| ≡ |W0 + α(b + X)Φn| ≪ 1 ∀ |ϕ| = |Im Φ| < ϕ60 (3.10)

and a < 1 together are sufficient to ensure that the uplifted T -minimum occurs at σ =

Re T ≫ 1 and aσ ≫ 1 if it occurs at all. This guarantees the validity of both the super-

gravity approximation and the one-instanton approximation that we use.

Under these conditions, the existence of a minimum for T will be determined by the

competition between |DT W |2, which is trying to relax to zero close to the location of the

old AdS minimum, and |FX |2 = eK |DXW |2 ∼ 1/σ3, which is adding a positive contribution

to the energy that vanishes like a power law at large volume. This ultimately results in

the condition eq. (3.6) for avoiding destruction of the minimum for the T -modulus.

Finally, we note that the fact that we can work in the regime of validity of supergravity

in the one-instanton approximation, simplifies our further estimates. In this regime, when

estimating the magnitudes of the F -terms FΦ, FX and of the superpotential W , we can

neglect the non-perturbative term ∼ e−aT in W and in the derived expressions for FΦ and

FX , because exp(−aT ) is suppressed relative to W0,eff.(Φ) by a factor 1/(aσmin(ϕ)), which

is typically O
(

1
10

)

.

Avoiding decompactification during inflation. We will now evaluate the constraint

eq. (3.6), which must be satisfied to avoid decompactification. For this purpose, let us first

focus on the region where Φ is large. Note that we want to produce a hierarchy in W , so

we want W0 to be many orders of magnitude smaller than the polynomial field terms (at

6Strictly speaking, this is the energetic scaling of an unwarped anti-D3 brane. The energy of a D3 in

a warped throat, which appears in many scenarios, has 1

σ2
scaling with an exponentially small prefactor,

as discussed in section 5.1 of [42]. That is why we have used this latter form for the “uplifting term”

throughout our discussion.
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least until the end of inflation, when the polynomial terms disappear). Combined with the

fact |X| ≪ 1, this allows us to approximate W ≈ αbΦn. Furthermore, since FX has the

highest power of Φ among the F -terms (FX ∼ eK/2αΦn) FX dominates among the F -terms

for large Φ. Hence, eq. (3.6) becomes,

√

|F 2
Φ| + |F 2

X |
√

3eK/2|〈W 〉|
∼ |FX |√

3eK/2|〈W 〉|
∼ eK/2αΦn

√
3eK/2αbΦn

∼ 1√
3b

. (3.11)

Therefore, at large Φ, the ratio between the F -terms and 〈W 〉 is constant. Thus, as

long as we pick an O(1) value for b such that the ratio is O(1), there is no danger of

decompactification for large Φ.

We depict this behavior in figure 1 for an exemplary choice of parameters in eq. (3.1)

given by: A = 1, a = 2π
10 , W0 = −10−15, α = 5 × 10−19, b =

√

2/5, n = 10, and

γ = 2. This choice of parameters gives an effective inflationary potential V (ϕ) ∼ ϕ20 for

ϕ . ϕ60 ≃ 50MP with the choice of α giving us δρ/ρ ≃ 1.6 × 10−5 at ϕ60. Here we have

approximated the functions f, g in eq. (3.1) by f(X) = b + X + X2/2 and g(X) = 1 + X

for definiteness, to check explicitly that the higher-order terms do not spoil the behaviour

of the model, as expected from the smallness of X during inflation. Figure 2 shows us

|〈W (ϕ,X(ϕ), T (ϕ))〉| as a function of the inflation ϕ, where X(ϕ), T (ϕ) denote the fields

X,T adiabatically tracking their instantaneous minima at every given value of ϕ.

Now, let us examine the region when Φ is small, i.e. sub-Planckian. In this region, the

FΦ term dominates as it has one smaller power of Φ than FX . This means in the small Φ

limit eq. (3.6) can be written as

|FΦ|√
3eK/2|〈W 〉|

∼ O(1). (3.12)

Because η vanishes, we can ignore the Kähler covariantization of the derivative in evaluating

FΦ. Hence, we are allowed to apply the global SUSY approximation, so

FΦ ≈ eK/2(nαbΦn−1 + nαXΦn−1) ≈ eK/2nαbΦn−1 . (3.13)

We also dropped the XΦn−1 term in (3.13) since 〈X〉 ≃ 0 (due to the −γ(XX̄)2 term in

the Kähler potential). It follows that

|FΦ|√
3eK/2|〈W 〉|

≈ nαbΦn−1

√
3(αbΦn + W0)

∼ 1

Φ
. (3.14)

We have again dropped the exponential in T from W since after inflation ends (and hence

also close to the end of inflation), the non-perturbative term in the superpotential exp(−aT )

at the minimum for T is again smaller than W0,eff.(Φ) by a factor ∼ 1/(aT ) ≪ 1 (and so

can be neglected when evaluating the ratio eq. (3.14)). Furthermore, we again dropped the

XΦn term for the same reason as above (〈X〉 ≃ 0 during inflation).

The Φ−1 scaling of the ratio eq. (3.14) presents us with a danger of losing the T -

minimum by producing too much uplifting in |FΦ|2 after the exit from inflation, for very

small ϕ ≪ ϕexit. To prevent this from happening, FΦ in eq. (3.14) needs to satisfy eq. (3.12)
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Figure 1. The |F/W |2-ratios plotted as functions of the inflaton ϕ with X and T adiabatically

tracking their instantaneous minima.

for all ϕ. This is easy to check; the function xn−1/(xn + c) has one global maximum for

x > c > 0. Thus, we need

max

( |FΦ|√
3eK/2|〈W 〉|

)

∼ O(1). (3.15)

Calculating the maximum of eq. (3.14), our constraint becomes

max

( |FΦ|√
3eK/2|〈W 〉|

)

=
n − 1√

3

(

αb

W0(n − 1)

)1/n

∼ O(1). (3.16)

If we take b ∼ O(1), then we need α ∼ W0. This can be satisfied in principle, even

with the correct size of inflaton-generated density perturbations at the 60th e-folding, by

choosing n > 1 sufficiently large. We will now make this statement precise by discussing

the hierarchies and perturbations that result for various values of n and W0.
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Figure 2. The vev of the superpotential |〈W 〉| = |〈W (ϕ, X(ϕ), T (ϕ))〉| plotted as a function of the

inflaton ϕ with X and T adiabatically tracking their instantaneous minima.

3.2 The structure of the F -terms and a no-go result

By inspecting the properties of the ratio eq. (3.14) we are led towards two related obser-

vations.

Firstly, note that eq. (3.14) is universal for all inflation models in which FΦ is the

dominant contribution to V at small values of Φ, i.e. when the inflaton’s own F -term

dominates at small Φ. This statement holds regardless of whether the model is small-field

or large-field, since the analysis uses eq. (3.14) only at small Φ close to the post-inflationary

minimum, where Taylor expansion always gives us a polynomial form of the superpotential

in Φ. Thus the constraint on n arising from these considerations is generic.7

We emphasize again that the constraint from eq. (3.14) arises for very small inflaton

values |W0| < ϕ ≪ ϕexit after inflation ended at ϕexit ≫ |W0|. Due to the desired smallness

of |W0| in models with low-energy supersymmetry, this constraint therefore applies to both

large-field and small-field models.

Secondly, we observe that as long as the F -term driving inflation is given by FΦ, i.e.

by the inflaton’s own F -term, we see that eq. (3.14) tells us that FΦ decays relative to

W as Φ−1 for large Φ. Due to the −3eK |W |2 term in the supergravity F -term scalar

potential, this implies that V (Φ) is curving downwards with increasing ∂2V/∂Φ2 for very

large values of Φ, rendering a monotonically increasing inflaton potential at large field

values impossible.

This second property of eq. (3.14) leads us to add a second chiral field X such that

〈X〉 ≃ 0 during inflation but |FX | ≫ |FΦ| with |FX/eK/2W | ≃ const. &
√

3 so that

V (Φ) ∼ |FX |2 is monotonically increasing with Φ at large values of Φ (as one would need for

7Non-generic exceptions include the case where the functional form of W (Φ) in the small Φ regime is a

single exponential, which by itself has no minimum and thus invalidates the preceding argument. In any

such scenario one needs to build in a mechanism for graceful exit.
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large-field inflation). One way to satisfy these requirements is to have a linear function of X

multiplying the inflationary polynomial in Φ inside W , which led to the choice of eq. (3.1).

Note that these latter considerations are similar to the ones which led to the first

natural realization of m2ϕ2 chaotic inflation in 4D supergravity by Kawasaki, Yamaguchi

& Yanagida [39]. Our setup here shares the property with their model that inflation is

driven by FX instead of FΦ, with |FX/eK/2W | ≃ const. &
√

3 at large Φ. However,

it generalizes the XΦ coupling in the superpotential used by these authors; this kind of

coupling by itself would give 〈W 〉 → 0 at all Φ (due to the small X vev), thus yielding a

model where the modulus T would decompactify.

3.3 Horse trading: achievable hierarchies vs required inflaton power n and

δρ/ρ

In our model, V is dominated at large ϕ values by the FX term, as it has the largest power

of ϕ. Hence, FX is the dominant term driving inflation, and we may approximate

V ∼ |FX |2 ∼ α2ϕ2n (3.17)

for large ϕ. Now, the magnitude of the density perturbation at 60 e-folds is given by

δ ≡ δρ

ρ
=

√

1

150π2
· V

ǫ

∣

∣

∣

∣

∣

ϕ=ϕ60

, (3.18)

where ǫ = 1
2

(

V ′

V

)2
is the ǫ slow roll parameter and ϕ60 is the value of ϕ at 60 e-folds.

The measured value of δ is 2 × 10−5. However, the purpose of this paper is not to create

a fully realistic model compatible with experiment, but to demonstrate a mechanism for

circumventing the KL problem. For this reason, we leave δ as a free parameter and explore

what values it can take in our model. It is easy to calculate ϕ60 [4] and in our case

ϕ60 = 2
√

60(n − 1). (3.19)

Using the above three equations, we can solve for α as a function of δ and n, giving us

α =
10
√

3πnδ

ϕn+1
60

, (3.20)

where ϕ60 is given by eq. (3.19). Substituting this expression into eq. (3.16), we have

(n − 1)

(

10
√

3πbnδ

ϕn+1
60 W0(n − 1)

)1/n

≤ 2
√

3, (3.21)

where we took O(1) = 2 for calculational purposes. Now, in order for m3/2 ∼ O(1)TeV,

we take W0 = 10−15. Solving for δ as a function of n yields

δ ≤

(

2
√

3
n−1

)n
ϕn+1

60 W0(n − 1)

10
√

3πbn
. (3.22)
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Figure 3. Minimum value of n in the inflaton potential V (ϕ) ∼ ϕ2n necessary to achieve a given

δ ≡ δρ/ρ, at fixed W0 = −10−15, satisfying the no-decompactification-constraint eq. (3.6). Points

are labelled in the format (n,O(|Wi|/|W0|)), where Wi = 〈W (ϕ60, X(ϕ60), T (ϕ60))〉 is the initial

superpotential (and O(|x|) here denotes the order of magnitude of |x|).

This equation gives us the minimum value of n needed to realize a given δ for a fixed

value of W0, subject to the constraint that decompactification does not occur. We have

plotted Min(n), the lower bound on n necessary to achieve a given δ without too much

uplifting, in figure 3 for b = 1
2 . In each of the cases, the initial W is many orders of

magnitude larger than W0, in the regime for large field inflation. After inflation, W ≈
W0, in the regime for TeV-scale SUSY breaking, thereby dynamically overcoming the KL

problem. Furthermore, this toy model is robust in that it does not require extensive fine-

tuning, since we may take b to be any value in
[

1/4 , 1/
√

2
]

, and α is then determined by

eq. (3.20). It is worth pointing out that to satisfy observational data on δ, we require n ≥ 7.

We conclude this section by exploring the relation between W0 and n if we force

δ = 2 × 10−5 (which is of interest as it is the observed value!). We rearrange eq. (3.20) to

get

W0 ≥ 10
√

3πnbδ
(

2
√

3
n−1

)n
ϕn+1

60 (n − 1)
. (3.23)

This equation gives us a lower limit for W0 and hence gives us a lower limit for m3/2 after

inflation, and we have plotted the results in figure 4. Observational constraints on the

spectral index and the tensor to scalar ratio (from e.g. [43]) require 2n ≤ 4. Therefore,

m3/2 cannot be on the order of the TeV scale in our toy model. On the other hand, even

for small n, 〈W 〉 decreases by several orders of magnitude during inflation, so m3/2 ≪ H

is still satisfied in these models.

– 14 –



J
H
E
P
0
6
(
2
0
1
0
)
0
6
5

æ

æ

æ

æ

æ

æ

æ

æ

æ

H2,103
L

H3,105
L

H5,107
L

H7,1010
L

H10,1013
L

1.0 10.05.02.0 3.01.5 7.0

10-17

10-14

10-11

10-8

MinHnL

W0

Figure 4. Minimum value of n in the inflaton potential V (ϕ) ∼ ϕ2n necessary to achieve a given

post-inflationary vacuum VEV of the superpotential W0, at fixed δ ≡ δρ/ρ = 2 × 10−5, satisfying

the no-decompactification-constraint eq. (3.6). Points are labelled in the format (n,O(|Wi|/|W0|)),
where Wi = 〈W (ϕ60, X(ϕ60), T (ϕ60))〉 is the initial superpotential (and O(|x|) here denotes the

order of magnitude of |x|).

To summarize, while the class of ϕ2n chaotic inflation models we have studied in this

section are able to accomodate very large ratios H/m3/2 at large enough n, this precise

class of models is ruled out by experimental constraints on the scalar spectral index ns and

the tensor to scalar ratio r for all n ≥ 2. Therefore, the values of n which are consistent

with TeV-scale supersymmetry breaking, are inconsistent with present cosmological data.

Some of the strongest constraints on models in this subsection arise from the conditions

required to prevent decompactification at small values of Φ. For our large-field models,

the small Φ regime has little to do with the period of inflation itself, and it seems possible

that by studying models with a slightly more complicated exit from inflation (as in hybrid

models [44]), one can build fully realistic theories with m3/2 ∼ TeV ≪ H.

4 Conclusions

In this paper, we wrote down a class of toy models of inflation in string-inspired supergravity

that successfully achieve m3/2 ≪ H. This shows that there is no general reason, even in

simple models of moduli stabilization in string theory, that the gravitino mass should be

tied to the scale of inflation. Hence, the problem discussed in [23] is not generic within

inflation models in string-inspired supergravity constructions. Rather, it is an artifact of

studying very specific models.
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However, our work leaves several important open questions. Firstly, the models we

presented are basically supergravity implementations of ϕ2n chaotic inflation with various

values of n. The values of n which we require to accomodate a TeV gravitino mass are

ruled out by experiment (being clearly disfavored by their predictions for both ns and

r). Values of n which are consistent with cosmological data still yield a large hierarchy

between H and m3/2, but it is not large enough to allow TeV scale (or lower) gravitino

mass. Therefore, finding models which have m3/2 ≪ H and which are consistent with

both precision cosmological data and low-energy supersymmetry remains an open problem.

Secondly, our models are not derived in a top-down framework like string theory; the

embedding of large-field inflation in string models with low-energy supersymmetry remains

an unmet challenge.

It would be very interesting to try and address these problems, either in the class

of models similar to [26], or in alternatives based on e.g. [45–53]. Our basic idea is to

write down natural theories which allow 〈W 〉 to vary by many orders of magnitude during

inflation, to free the Hubble scale of inflation from the final gravitino mass. This idea

should allow many different implementations, and it seems quite plausible that some of

them will yield models consistent with both cosmological observations and low-energy

supersymmetry.
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