Recently, an ionized cloud of gas was discovered plunging toward the
supermassive black hole, SgrA*, at the centre of the Milky Way. The cloud is
being tidally disrupted along its path to closest approach at ~3100
Schwarzschild radii from the black hole. Here, we show that the observed
properties of this cloud of gas can naturally be produced by a proto-planetary
disk surrounding a low-mass star, which was scattered from the observed ring of
young stars orbiting SgrA*. As the young star approaches the black hole, its
disk experiences both photo-evaporation and tidal disruption, producing a
cloud. Our model implies that planets form in the Galactic centre, and that
tidal debris from proto-planetary disks can flag low mass stars which are
otherwise too faint to be detected.Comment: Accepted to Nature Communications; new Figure 4b provides predicted
Br-gamma emission as a function of tim