259 research outputs found

    Characteristics, management and attainment of lipid target levels in diabetic and cardiac patients enrolled in Disease Management Program versus those in routine care: LUTZ registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2002 the sick funds in Germany have widely implemented disease management programs (DMPs) for patients with type 2 diabetes mellitus (DM) and coronary heart disease (CHD). Little is known about the characteristics, treatment and target attainment lipid levels of these patients enrolled in DMPs compared to patients in routine care (non-DMP).</p> <p>Methods</p> <p>In an open, non-interventional registry (LUTZ) in Germany, 6551 physicians documented 15,211 patients with DM (10,110 in DMP, 5101 in routine care) and 14,222 (6259 in DMP, 7963 in routine care) over a follow-up period of 4 months. They received the NCEP ATP III guidelines as a reminder on lipid level targets.</p> <p>Results</p> <p>While demographic characteristics of DMP patients were similar to routine care patients, the former had higher rates of almost all cardiovascular comorbidities. Patients in DMPs received pharmacological treatment (in almost all drug classes) more often than non-DMP patients (e.g. antiplatelets: in DM 27.0% vs 23.8%; in CHD 63.0% vs. 53.6%). The same applied for educational measures (on life style changes and diet etc.). The rate of target level attainment for low density lipoprotein cholesterol (LDL-C) < 100 mg/dl was somewhat higher in DMP patients at inclusion compared to non-DMP patients (DM: 23.9% vs. 21.3%; CHD: 30.6% vs. 23.8%) and increased after 4 months (DM: 38.3% vs. 36.9%; CHD: 49.8% vs. 43.3%). Individual LDL-C target level attainment rates as assessed by the treating physicians were higher (at 4 months in DM: 59.6% vs. 56.5%; CHD: 49.8% vs 43.3%). Mean blood pressure (BP) and HbA<sub>1c </sub>values were slightly lowered during follow-up, without substantial differences between DMP and non-DMP patients.</p> <p>Conclusion</p> <p>Patients with DM, and (to a greater extent) with CHD in DMPs compared to non-DMP patients in routine care have a higher burden of comorbidities, but also receive more intensive pharmacological treatment and educational measures. The present data support that the substantial additional efforts in DMPs aimed at improving outcomes resulted in quality gains for achieving target LDL-C levels, but not for BP or HbA<sub>1c</sub>. Longer-term follow-up is needed to substantiate these results.</p

    Atherosclerosis profile and incidence of cardiovascular events: a population-based survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a chronic progressive disease often presenting as clinical cardiovascular disease (CVD) events. This study evaluated the characteristics of individuals with a diagnosis of atherosclerosis and estimated the incidence of CVD events to assist in the early identification of high-risk individuals.</p> <p>Methods</p> <p>Respondents to the US SHIELD baseline survey were followed for 2 years to observe incident self-reported CVD. Respondents had subclinical atherosclerosis if they reported a diagnosis of narrow or blocked arteries/carotid artery disease without a past clinical CVD event (heart attack, stroke or revascularization). Characteristics of those with atherosclerosis and incident CVD were compared with those who did not report atherosclerosis at baseline but had CVD in the following 2 years using chi-square tests. Logistic regression model identified characteristics associated with atherosclerosis and incident events.</p> <p>Results</p> <p>Of 17,640 respondents, 488 (2.8%) reported having subclinical atherosclerosis at baseline. Subclinical atherosclerosis was associated with age, male gender, dyslipidemia, circulation problems, hypertension, past smoker, and a cholesterol test in past year (OR = 2.2) [all p < 0.05]. Incident CVD was twice as high in respondents with subclinical atherosclerosis (25.8%) as in those without atherosclerosis or clinical CVD (12.2%). In individuals with subclinical atherosclerosis, men (RR = 1.77, p = 0.050) and individuals with circulation problems (RR = 2.36, p = 0.003) were at greatest risk of experiencing CVD events in the next 2 years.</p> <p>Conclusion</p> <p>Self-report of subclinical atherosclerosis identified an extremely high-risk group with a >25% risk of a CVD event in the next 2 years. These characteristics may be useful for identifying individuals for more aggressive diagnostic and therapeutic efforts.</p

    ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 Performance Measures for Adults Undergoing Percutaneous Coronary Intervention A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance

    Get PDF
    Journal of the American College of Cardiology Ɠ 2014 by the American College of Cardiology Foundation, American Heart Association, Inc., American Medical Association, and National Committee for Quality Assurance Published by Elsevier Inc. Vol. 63, No. 7, 2014 ISSN 0735-1097/$36.00 http://dx.doi.org/10.1016/j.jacc.2013.12.003 PERFORMANCE MEASURES ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 Performance Measures for Adults Undergoing Percutaneous Coronary Intervention A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance Developed in Collaboration With the American Association of Cardiovascular and Pulmonary Rehabilitation and Mended Hearts Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and Mended Hearts WRITING COMMITTEE MEMBERS Brahmajee K. Nallamothu, MD, MPH, FACC, FAHA, Co-Chair*; Carl L. Tommaso, MD, FACC, FAHA, FSCAI, Co-Chairy; H. Vernon Anderson, MD, FACC, FAHA, FSCAI*; Jeffrey L. Anderson, MD, FACC, FAHA, MACP*; Joseph C. Cleveland, J R , MDz; R. Adams Dudley, MD, MBA; Peter Louis Duffy, MD, MMM, FACC, FSCAIy; David P. Faxon, MD, FACC, FAHA*; Hitinder S. Gurm, MD, FACC; Lawrence A. Hamilton, Neil C. Jensen, MHA, MBA; Richard A. Josephson, MD, MS, FACC, FAHA, FAACVPRx; David J. Malenka, MD, FACC, FAHA*; Calin V. Maniu, MD, FACC, FAHA, FSCAIy; Kevin W. McCabe, MD; James D. Mortimer, Manesh R. Patel, MD, FACC*; Stephen D. Persell, MD, MPH; John S. Rumsfeld, MD, PhD, FACC, FAHAjj; Kendrick A. Shunk, MD, PhD, FACC, FAHA, FSCAI*; Sidney C. Smith, J R , MD, FACC, FAHA, FACP{; Stephen J. Stanko, MBA, BA, AA#; Brook Watts, MD, MS *ACC/AHA Representative. ySociety of Cardiovascular Angiography and Interventions Representative. zSociety of Thoracic Surgeons Representative. xAmerican Association of Cardiovascular and Pulmonary Rehabilitation Representative. kACC/AHA Task Force on Performance Measures Liaison. {National Heart Lung and Blood Institute Representative. #Mended Hearts Representative. The measure speciļ¬cations were approved by the American College of Cardiology Board of Trustees, American Heart Association Science Advisory and Coordinating Committee, in January 2013 and the American Medical Associationā€“Physician Consortium for Performance Improvement in February 2013. This document was approved by the American College of Cardiology Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in October 2013, and the Society of Cardiovascular Angiography and Interventions in December 2013. The American College of Cardiology requests that this document be cited as follows: Nallamothu BK, Tommaso CL, Anderson HV, Anderson JL, Cleveland JC, Dudley RA, Duffy PL, Faxon DP, Gurm HS, Hamilton LA, Jensen NC, Josephson RA, Malenka DJ, Maniu CV, McCabe KW, Mortimer JD, Patel MR, Persell SD, Rumsfeld JS, Shunk KA, Smith SC, Stanko SJ, Watts B. ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 perfor- mance measures for adults undergoing percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance. J Am Coll Cardiol 2014;63:722ā€“45. This article has been copublished in Circulation. Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org) and the American Heart Asso- ciation (http://my.americanheart.org). For copies of this document, please contact Elsevier Inc. Reprint Department, fax (212) 633-3820, e-mail [email protected]. Permissions: Multiple copies, modiļ¬cation, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American College of Cardiology. Requests may be completed online via the Elsevier site (http://www.elsevier.com/authors/obtaining- permission-to-re-use-elsevier-material). This Physician Performance Measurement Set (PPMS) and related data speciļ¬cations were developed by the Physician Consortium for Performance Improvement (the Consortium), including the American College of Cardiology (ACC), the American Heart Association (AHA), and the American Medical Association (AMA), to facilitate quality-improvement activities by physicians. The performance measures contained in this PPMS are not clinical guidelines, do not establish a standard of medical care, and have not been tested for all potential applications. Although copyrighted, they can be reproduced and distributed, without modiļ¬cation, for noncommercial purposesdfor example, use by health care pro

    Comparison of a one-time educational intervention to a teach-to-goal educational intervention for self-management of heart failure: design of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heart failure (HF) is common, costly and associated with significant morbidity and poor quality of life, particularly for patients with low socioeconomic status. Self-management training has been shown to reduce HF related morbidity and hospitalization rates, but there is uncertainty about how best to deliver such training and what patients benefit. This study compares a single session self-management HF training program against a multiple session training intervention and examines whether their effects differ by literacy level.</p> <p>Methods/Design</p> <p>In this randomized controlled multi-site trial, English and Spanish-speaking patients are recruited from university-affiliated General Internal Medicine and Cardiology clinics at 4 sites across the United States. Eligible patients have HF with New York Heart Association class II-IV symptoms and are prescribed a loop diuretic. Baseline data, including literacy level, are collected at enrollment and follow-up surveys are conducted at 1, 6 and 12 months</p> <p>Upon enrollment, both the control and intervention groups receive the same 40 minute, literacy-sensitive, in-person, HF education session covering the 4 key self-management components of daily self assessment and having a plan, salt avoidance, exercise, and medication adherence. All participants also receive a literacy-sensitive workbook and a digital bathroom scale. After the baseline education was completed, patients are randomly allocated to return to usual care or to receive ongoing education and training. The intervention group receives an additional 20 minutes of education on weight and symptom-based diuretic self-adjustment, as well as periodic follow-up phone calls from the educator over the course of 1 year. These phone calls are designed to reinforce the education, assess participant knowledge of the education and address barriers to success.</p> <p>The primary outcome is the combined incidence of all cause hospitalization and death. Secondary outcomes include HF-related quality of life, HF-related hospitalizations, knowledge regarding HF, self-care behavior, and self-efficacy. The effects of each intervention will be stratified by patient literacy, in order to identify any differential effects.</p> <p>Discussion</p> <p>Enrollment of the proposed 660 subjects will continue through the end of 2009. Outcome assessments are projected to be completed by early 2011.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <url>http://www.clinicaltrials.gov/</url> NCT00378950</p

    Effects of halogens on European air-quality

    Get PDF
    Halogens (Cl, Br) have a profound influence on stratospheric ozone (O3). They (Cl, Br and I) have recently also been shown to impact the troposphere, notably by reducing the mixing ratios of O3 and OH. Their potential for impacting regional air-quality is less well understood. We explore the impact of halogens on regional pollutants (focussing on O3) with the European grid of the GEOS-Chem model (0.25Ā° Ɨ 0.3125Ā°). It has recently been updated to include a representation of halogen chemistry. We focus on the summer of 2015 during the ICOZA campaign at the Weybourne Atmospheric Observatory on the North Sea coast of the UK. Comparisons between these observations together with those from the UK air-quality network show that the model has some skill in representing the mixing ratios/concentration of pollutants during this period. Although the model has some success in simulating the Weybourne ClNO2 observations, it significantly underestimates ClNO2 observations reported at inland locations. It also underestimates mixing ratios of IO, OIO, I2 and BrO, but this may reflect the coastal nature of these observations. Model simulations, with and without halogens, highlight the processes by which halogens can impact O3. Throughout the domain O3 mixing ratios are reduced by halogens. In northern Europe this is due to a change in the background O3 advected into the region, whereas in southern Europe this is due to local chemistry driven by Mediterranean emissions. The proportion of hourly O3 above 50 nmol mol-1 in Europe is reduced from 46% to 18% by halogens. ClNO2 from N2O5 uptake onto sea-salt leads to increases in O3 mixing ratio, but these are smaller than the decreases caused by the bromine and iodine. 12% of ethane and 16% of acetone within the boundary layer is oxidised by Cl. Aerosol response to halogens is complex with small (āˆ¼10%) reductions in PM2.5 in most locations. A lack of observational constraints coupled to large uncertainties in emissions and chemical processing of halogens make these conclusions tentative at best. However, the results here point to the potential for halogen chemistry to influence air quality policy in Europe and other parts of the world

    From Vulnerable Plaque to Vulnerable Patient

    Get PDF
    Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document will focus on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients
    • ā€¦
    corecore