46 research outputs found

    CRD-BP mediates stabillization of βTrCP1 and c-mys mRNA in response to β-catenin signalling

    Get PDF
    Division of Translational and Clinical Oncolog

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Planck early results XXV : Thermal dust in nearby molecular clouds

    Get PDF
    Peer reviewe

    Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1

    Get PDF

    Planck early results XXIII : The first all-sky survey of Galactic cold clumps

    Get PDF
    Peer reviewe

    Planck early results XVIII : The power spectrum of cosmic infrared background anisotropies

    Get PDF
    Peer reviewe

    Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013

    Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    Get PDF
    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150 pc) and remote (2 kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20 pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3 pc, for column densities NH2 ∼ 0.1 to 1.6 × 1022 cm−2, and with linear mass density covering a broad range, between 15 and 400 M pc−1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7 K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M pc−1, comparable within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots in massive elongated structures that may be the long-searched for progenitors of stellar clusters

    Planck early results. XXV. Thermal dust in nearby molecular clouds

    Get PDF
    Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around −7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16−17 K in the diffuse regions to 13−14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T − β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions.We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles

    Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue

    Get PDF
    The data reported in Planck’s Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Planck’s source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Planck’s uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated
    corecore