CRD-BP mediates stabilization of β TrCP1 and c-myc mRNA in response to β -catenin signalling

Noubissi FK, Elcheva I, Bhatia N, Shakoori A, Ougolkov A, Liu J, Minamoto T, Ross J, Fuchs SY, Spiegelman VS.

Although constitutive activation of β -catenin/Tcf signalling is implicated in the development of human cancers, the mechanisms by which the β -catenin/Tcf pathway promotes tumorigenesis are incompletely understood. Messenger RNA turnover has a major function in regulating gene expression and is responsive to developmental and environmental signals. mRNA decay rates are dictated by cis-acting elements within the mRNA and by trans-acting factors, such as RNA-binding proteins. Here we show that β -catenin stabilizes the mRNA encoding the F-box protein β TrCP1, and identify the RNA-binding protein CRD-BP (coding region determinant-binding protein) as a previously unknown target of β -catenin/Tcf transcription factor. CRD-BP binds to the coding region of β TrCP1 mRNA. Overexpression of CRD-BP stabilizes β TrCP1 mRNA and elevates β TrCP1 levels (both in cells and in vivo), resulting in the activation of the Skp1-Cullin1-F-box protein (SCF $^{\beta \text{TrCP}}$) E3 ubiquitin ligase and in accelerated turnover of its substrates including I κB and β -catenin. CRD-BP is essential for the induction of both β TrCP1 and c-Myc by β -catenin signalling in colorectal cancer cells. High levels of CRD-BP that are found in primary human colorectal tumours exhibiting active β -catenin/Tcf signalling implicates CRD-BP induction in the upregulation of β TrCP1, in the activation of dimeric transcription factor NF- κ B and in the suppression of apoptosis in these cancers.

[Reference]

Noubissi FK, Elcheva I, Bhatia N, Shakoori A, Ougolkov A, Liu J, Minamoto T, Ross J, Fuchs SY, Spiegelman VS. CRD-BP mediates stabilization of β TrCP1 and c-myc mRNA in response to β -catenin signalling. Nature 2006;441(7095):898-901.