362 research outputs found

    2D gel probes for Fe2+, ∑PO4 and S(-II). Distribution studies in aquatic sediments

    Get PDF
    Date du colloque : 01/2009International audienc

    CO2 leakage in a shallow aquifer - Observed changes in case of small release

    Get PDF
    International audienceGeological storage of CO2 in deep saline aquifers is one of the options considered for the mitigation of CO2 emissions into the atmosphere. A deep geological CO2 storage is not expected to leak but potential leakage monitoring is required by legislation, as e.g. the EU Directive relative to Geological Storage of CO2. To ensure that the storage will be permanent and safe for the environment and human health, the legislation require that the CCS operators monitor the injection, the storage complex and if needed the environment to detect any CO2 leakage and its hazardous effects on the environment. Various monitoring methods are available for the monitoring of CO2 storage sites and the environment as listed by the IEA-GHG and the monitoring selection tool. Geophysical based methods have a greater area of investigation but may suffer from insufficient sensitivities to detect small leakages. At the opposite, geochemical monitoring methods may have insufficient investigation area but may be able to detect more subtle changes even if monitoring in deep environments is not straightforward. Leakage detection is not yet well constrained and research efforts and tests are required to gain confidence into monitoring strategies. In the framework of the CIPRES project, funded by the French Research Agency, a shallow CO2 release experiment has been performed in October 2013 in a chalk aquifer from the Paris basin. The Catenoy site has been characterised since March 2013 through several wells set on a straight line oriented along the local flow (see Gombert et al., this conference). Such an experiment is designed to gain confidence in leakage detection in subsurface environments by understanding processes and principles governing seepage occurrence. Contrary to other experiments such as ZERT or CO2FieldLab ones, where gaseous CO2 was injected directly in the water, the injection was done with water saturated with CO2 at atmospheric pressure. 10 m3 of water were pumped from the aquifer, then saturated with 20 kg of food-grade CO2 and injected during 40 hours between 12 and 25 m depth. Daily monitoring of soil gases and water was performed during injection and post-injection phases (2 weeks duration) in the area previously delimited by a tracer test. The aim is to determine if geochemical methods are accurate enough to allow detecting small release in shallow environments. If successful, such an experiment can help to gain confidence in leakage detection. As expected, no change was noticed in the unsaturated zone. The shape of gas concentrations distribution at the surface (CO2, O2, N2, 4He, 222Rn) observed during the injection is strictly similar to the repartition of gas species observed since March 2013. The main process observed is respiration and no change linked to the injection was highlighted, only seasonal effects. Slight changes were observed in the saturated zone. The water was collected at 15 m deep excepted for one stratified borehole where water was sampled at 15 and 18 m. The pH of the injected water was lower (mean value: 5.3±0.1) than the initial pH of the aquifer (7.1-7.2) due to CO2 dissolution. Only two monitoring boreholes set 10 m and 20 m downstream from the injection well may be considered as influenced by the experiment. A probable enrichment in HCO3 linked to interaction of the CO2 saturated water with chalk was noticed, with an enrichment close to +8 to +10% of the initial value. For one borehole the pH value remained nearly stable in relation with pH buffering and in the other borehole a slight decrease was observed (-0.1 to -0.15 pH unit). However this decrease is significant as it is above the instrumental uncertainty of the electrodes. In addition, a slight increase of the electrical conductivity was noticed but it did not exceed +6% compared to baseline data. Such slight changes in the physico-chemical parameters are related to small variations in dissolved elements. Apart from HCO3, the other major ion affected by CO2-water rock-interaction is Ca as the aquifer is mainly composed by calcite. Concentrations increases by +8 to +9% whose amplitude is in agreement with the increase of HCO3. Trace elements were also little affected, the main change concerned Sr (+8 to +10% increase). Modifications occurring during this CO2 release experiment have small amplitude as expected but these results highlight that geochemical methods are able to detect small leakages. Consequently, effects were noticed only during a short period of time. It is not possible to determine if all the injected CO2 has migrated downwards in the direction of flow or if partial lateral migration has occurred, but post-injection monitoring and boreholes logging 12 days after the stop of injection did not reveal any discrepancy in the water columns. On the other hand, the magnitude of the pH change is consistent with the behaviour of the co-injected tracer (dilution ratio ~30). In the perspective of getting more information on the remobilisation of trace metal elements, a push-pull test will be performed in 2014 on the basis of the learning of this first experiment

    Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    Get PDF
    International audienceMethane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO 3 , SO2 4 , and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Reddening law and interstellar dust properties along Magellanic sight-lines

    Full text link
    This study establishes that SMC, LMC and Milky Way extinction curves obey the same extinction law which depends on the 2200A bump size and one parameter, and generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests that extinction in all three galaxies is of the same nature. The role of linear reddening laws over all the visible/UV wavelength range, particularly important in the SMC but also present in the LMC and in the Milky Way, is also highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages, 12 figures. Some figures are colour plot

    The effect of metallicity on the Cepheid distance scale and its implications for the Hubble constant (H0H_0) determination

    Full text link
    Recent HST determinations of the expansion's rate of the Universe (the Hubble constant, H_0) assumed that the Cepheid Period-Luminosity relation at V and I are independent of metallicity (Freedman, et al., 1996, Saha et al., 1996, Tanvir et al., 1995). The three groups obtain different vales for H_0. We note that most of this discrepancy stems from the asumption (by both groups) that the Period-Luminosity relation is independent of metallicity. We come to this conclusion as a result of our study of the Period-Luminosity relation of 481 Cepheids with 3 millions two colour measurements in the Large Magellanic Cloud and the Small Magellanic Cloud obtained as a by-product of the EROS microlensing survey. We find that the derived interstellar absorption corrections are particularly sensitive to the metallicity and when our result is applied to recent estimates based on HST Cepheids observations it makes the low-H_0 values higher and the high-H_0 value lower, bringing those discrepant estimates into agrement around H070km/sMpc1H_0 \approx 70 km/s Mpc^{-1}.Comment: 4 pages, Latex, with 2 .ps accepted for publication astronomy and astrophysics Letter

    EROS Variable Stars : Discovery of Beat Cepheids in the Small Magellanic Cloud and the effect of metallicity on pulsation

    Get PDF
    We report the discovery of eleven beat Cepheids in the Small Magellanic Cloud, using data obtained by the EROS microlensing survey. Four stars are beating in the fundamental and first overtone mode (F/1OT), seven are beating in the first and second overtone (1OT/2OT). The SMC F/1OT ratio is systematically higher than the LMC F/1OT, while the 1OT/2OT period ratio in the SMC Cepheids is the same as the LMC one.Comment: 4 pages, Latex file with 4 .ps figures. accepted for publication in A A Letter

    Neutral material around the B[e] supergiant star LHA 115-S 65: An outflowing disk or a detached Keplerian rotating disk?

    Full text link
    B[e] supergiants are surrounded by large amounts of hydrogen neutral material, traced by the emission in the optical [OI] lines. This neutral material is most plausibly located within their dense, cool circumstellar disks, which are formed from the (probably non-spherically symmetric) wind material released by the star. Neither the formation mechanism nor the resulting structure and internal kinematics of these disks (or disk-like outflows) are well known. However, rapid rotation, lifting the material from the equatorial surface region, seems to play a fundamental role. The B[e] supergiant LHA 115-S 65 (S65) in the SMC is one of the two most rapidly rotating B[e] stars known. Its almost edge-on orientation allows a detailed kinematical study of its optically thin forbidden emission lines. With a focus on the [OI] lines, we test the two plausible disk scenarios: the outflowing and the Keplerian rotating disk. Based on high- and low-resolution optical spectra, we investigate the density and temperature structure in those disk regions that are traced by the [OI] emission to constrain the disk sizes and mass fluxes needed to explain the observed [OI] line luminosities. In addition, we compute the emerging line profiles expected for either an outflowing disk or a Keplerian rotating disk, which can directly be compared to the observed profiles. Both disk scenarios deliver reasonably good fits to the line luminosities and profiles of the [OI] lines. Nevertheless, the Keplerian disk model seems to be the more realistic one, because it also agrees with the kinematics derived from the large number of additional lines in the spectrum. As additional support for the presence of a high-density, gaseous disk, the spectrum shows two very intense and clearly double-peaked [CaII] lines. We discuss a possible disk-formation mechanism, and similarities between S65 and the group of LBVs.Comment: 13 pages, 12 figures, accepted for publication in A&

    ISM Properties in Low-Metallicity Environments II. The Dust Spectral Energy Distribution of NGC 1569

    Full text link
    We present new 450 and 850 microns SCUBA data of the dwarf galaxy NGC 1569. We construct the mid-infrared to millimeter SED of NGC 1569, using ISOCAM, ISOPHOT, IRAS, KAO, SCUBA and MAMBO data, and model the SED in order to explore the nature of the dust in low metallicity environments. The detailed modeling is performed in a self-consistent way, synthesizing the global ISRF of the galaxy using an evolutionary synthesis model with further constraints provided by the observed MIR ionic lines and a photoionisation model. Our results show that the dust properties are different in this low metallicity galaxy compared to other more metal rich galaxies. The results indicate a paucity of PAHs probably due to the destructive effects of the ISRF penetrating a clumpy environment and a size-segregation of grains where the emission is dominated by small grains of size ~3 nm, consistent with the idea of shocks having a dramatic effect on the dust properties in NGC 1569. A significant millimetre excess is present in the dust SED which can be explained by the presence of ubiquitous very cold dust (T = 5-7 K). This dust component accounts for 40 to 70 % of the total dust mass in the galaxy (1.6 - 3.4 10^5 Msol) and could be distributed in small clumps (size a few pc) throughout the galaxy. We find a gas-to-dust mass ratio of 740 - 1600, larger than that of the Galaxy and a dust-to-metals ratio of 1/4 to 1/7. We generate an extinction curve for NGC 1569, consistent with the modeled dust size distribution. This extinction curve has relatively steep FUV rise and smaller 2175 Angstroms bump, resembling the observed extinction curve of some regions in the Large Magellanic Cloud.Comment: 20 pages, 20 figures, accepted by A&
    corecore