369 research outputs found

    Steady State of microemulsions in shear flow

    Full text link
    Steady-state properties of microemulsions in shear flow are studied in the context of a Ginzburg-Landau free-energy approach. Explicit expressions are given for the structure factor and the time correlation function at the one loop level of approximation. Our results predict a four-peak pattern for the structure factor, implying the simultaneous presence of interfaces aligned with two different orientations. Due to the peculiar interface structure a non-monotonous relaxation of the time correlator is also found.Comment: 5 pages, 3 figure

    Ordering of the lamellar phase under a shear flow

    Full text link
    The dynamics of a system quenched into a state with lamellar order and subject to an uniform shear flow is solved in the large-N limit. The description is based on the Brazovskii free-energy and the evolution follows a convection-diffusion equation. Lamellae order preferentially with the normal along the vorticity direction. Typical lengths grow as γt5/4\gamma t^{5/4} (with logarithmic corrections) in the flow direction and logarithmically in the shear direction. Dynamical scaling holds in the two-dimensional case while it is violated in D=3

    Nonequilibrium dynamics: preheating in the SU(2) Higgs model

    Full text link
    The term `preheating' has been introduced recently to denote the process in which energy is transferred from a classical inflaton field into fluctuating field (particle) degrees of freedom without generating yet a real thermal ensemble. The models considered up to now include, besides the inflaton field, scalar or fermionic fluctuations. On the other hand the typical ingredient of an inflationary scenario is a nonabelian spontaneously broken gauge theory. So the formalism should also be developed to include gauge field fluctuations excited by the inflaton or Higgs field. We have chosen here, as the simplest nonabelian example, the SU(2) Higgs model. We consider the model at temperature zero. From the technical point of view we generalize an analytical and numerical renormalized formalism developed by us recently to coupled channnel systems. We use the 't Hooft-Feynman gauge and dimensional regularization. We present some numerical results but reserve a more exhaustive discussion of solutions within the paramter space of two couplings and the initial value of the Higgs field to a future publication.Comment: 30 pages, 10 figures in enhanced postscript, 2 unreadable figures made accessibl

    Nonequilibrium dynamics: a renormalized computation scheme

    Full text link
    We present a regularized and renormalized version of the one-loop nonlinear relaxation equations that determine the non-equilibrium time evolution of a classical (constant) field coupled to its quantum fluctuations. We obtain a computational method in which the evaluation of divergent fluctuation integrals and the evaluation of the exact finite parts are cleanly separated so as to allow for a wide freedom in the choice of regularization and renormalization schemes. We use dimensional regularization here. Within the same formalism we analyze also the regularization and renormalization of the energy-momentum tensor. The energy density serves to monitor the reliability of our numerical computation. The method is applied to the simple case of a scalar phi^4 theory; the results are similar to the ones found previously by other groups.Comment: 15 pages, 9 postscript figures, revtex; version published in Phys. Rev, with minor corrections; improves the first version of 1996 by including the discussion of energy momentum tenso

    Noise properties of the CoRoT data: a planet-finding perspective

    Get PDF
    In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet finding channel, with a particular emphasis on the timescales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the timescales of interest. The bevhaiour of the noise on 2h timescales is well-described a power-law with index 0.25 in R-magnitude, ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence for a slight degradation of the performance over time. We find clear evidence for enhanced variability on hours timescales (at the level of 0.5 mmag) in stars identified as likely giants from their R-magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the direction of Aquila and Monoceros respectively. On the other hand, median correlated noise levels over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.Comment: 5 pages, 4 figures, accepted for publication in A&

    Renormalization of the nonequilibrium dynamics of fermions in a flat FRW universe

    Get PDF
    We derive the renormalized equations of motion and the renormalized energy-momentum tensor for fermions coupled to a spatially homogeneous scalar field (inflaton) in a flat FRW geometry. The fermion back reaction to the metric and to the inflaton field is formulated in one-loop approximation. Having determined the infinite counter terms in an MSˉ\bar{MS} scheme we formulate the finite terms in a form suitable for numerical computation. We comment on the trace anomaly which is inferred from the standard analysis. We also address the problem of initial singularities and determine the Bogoliubov transformation by which they are removed.Comment: 26 pages, LaTe

    Renormalization of nonequilibrium dynamics at large N and finite temperature

    Get PDF
    We generalize a previously proposed renormalization and computation scheme for nonequilibrium dynamics to include finite temperature and one-loop selfconsistency as arising in the large-N limit. Since such a scheme amounts essentially to tadpole summation, it also includes, at high temperature, the hard mass corrections proportional to T^2. We present some numerical examples at T=0 and at finite temperature; the results reproduce the essential features of other groups. Especially, we can confirm a recently discovered sum rule for the late time behaviour.Comment: 20 pages, LaTeX, 12 Figures as ps-file

    Doppler follow-up of OGLE transiting companions in the Galactic bulge

    Full text link
    Two years ago, the OGLE-III survey (Optical Gravitational Lensing Experiment) announced the detection of 54 short period multi-transiting objects in the Galactic bulge (Udalski et al., 2002a, 2002b). Some of these objects were considered to be potential hot Jupiters. In order to determine the true nature of these objects and to characterize their actual mass, we conducted a radial velocity follow-up of 18 of the smallest transiting candidates. We describe here our procedure and report the characterization of 8 low mass star transiting companions, 2 grazing eclipsing binaries, 2 triple systems, 1 confirmed exoplanet (OGLE-TR-56b), 1 possible exoplanet (OGLE-TR-10b), 1 clear false positive and 3 unsolved cases. The variety of cases encountered in our follow-up covers a large part of the possible scenarii occuring in the search for planetary transits. As a by-product, our program yields precise masses and radii of low mass stars.Comment: accepted in A&

    Removing systematics from the CoRoT light curves: I. Magnitude-Dependent Zero Point

    Get PDF
    This paper presents an analysis that searched for systematic effects within the CoRoT exoplanet field light curves. The analysis identified a systematic effect that modified the zero point of most CoRoT exposures as a function of stellar magnitude. We could find this effect only after preparing a set of learning light curves that were relatively free of stellar and instrumental noise. Correcting for this effect, rejecting outliers that appear in almost every exposure, and applying SysRem, reduced the stellar RMS by about 20 %, without attenuating transit signals.Comment: Accepted for publication in Astronomy and Astrophysic

    Transiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: a brown dwarf transiting companion

    Full text link
    We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12 +0.30 -0.15 Rjup, a mass of 63.3 +- 4.1 Mjup, and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarfs stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve favors a spin period between 2.9 and 3.1 days for the central star, compatible with a double-synchronisation of the system.Comment: 7 pages, 6 figures, accepted in A&
    corecore