The term `preheating' has been introduced recently to denote the process in
which energy is transferred from a classical inflaton field into fluctuating
field (particle) degrees of freedom without generating yet a real thermal
ensemble. The models considered up to now include, besides the inflaton field,
scalar or fermionic fluctuations. On the other hand the typical ingredient of
an inflationary scenario is a nonabelian spontaneously broken gauge theory. So
the formalism should also be developed to include gauge field fluctuations
excited by the inflaton or Higgs field. We have chosen here, as the simplest
nonabelian example, the SU(2) Higgs model. We consider the model at temperature
zero. From the technical point of view we generalize an analytical and
numerical renormalized formalism developed by us recently to coupled channnel
systems. We use the 't Hooft-Feynman gauge and dimensional regularization. We
present some numerical results but reserve a more exhaustive discussion of
solutions within the paramter space of two couplings and the initial value of
the Higgs field to a future publication.Comment: 30 pages, 10 figures in enhanced postscript, 2 unreadable figures
made accessibl