84 research outputs found

    Production of ultracold heteronuclear YbRb* molecules by photoassociation

    Full text link
    We have produced ultracold heteronuclear YbRb^* molecules in a combined magneto-optical trap by photoassociation. The formation of electronically excited molecules close to the dissociation limit was observed by trap loss spectroscopy in mixtures of 87^{87}Rb with 174^{174}Yb and 176^{176}Yb. The molecules could be prepared in a series of vibrational levels with resolved rotational structure, allowing for an experimental determination of the long-range potential in the electronically excited state

    Spatial separation in a thermal mixture of ultracold 174^{174}Yb and 87^{87}Rb atoms

    Full text link
    We report on the observation of unusually strong interactions in a thermal mixture of ultracold atoms which cause a significant modification of the spatial distribution. A mixture of 87^{87}Rb and 174^{174}Yb with a temperature of a few μ\muK is prepared in a hybrid trap consisting of a bichromatic optical potential superimposed on a magnetic trap. For suitable trap parameters and temperatures, a spatial separation of the two species is observed. We infer that the separation is driven by a large interaction strength between 174^{174}Yb and 87^{87}Rb accompanied by a large three-body recombination rate. Based on this assumption we have developed a diffusion model which reproduces our observations

    Role of rotational energy component in the dynamics of 16

    Full text link
    The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS) and the non-sticking (INS) limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2) and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    Operational experience and commissioning of the Belle II vertex detector

    Get PDF

    Belle II Vertex Detector Performance

    Get PDF
    The Belle II experiment at the SuperKEKB accelerator (KEK, Tsukuba, Japan) collected its first e+e− collision data in the spring 2019. The aim of accumulating a 50 times larger data sample than Belle at KEKB, a first generation B-Factory, presents substantial challenges to both the collider and the detector, requiring not only state-of-the-art hardware, but also modern software algorithms for tracking and alignment. The broad physics program requires excellent performance of the vertex detector, which is composed of two layers of DEPFET pixels and four layers of double sided-strip sensors. In this contribution, an overview of the vertex detector of Belle II and our methods to ensure its optimal performance, are described, and the first results and experiences from the first physics run are presented

    Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR

    Full text link
    corecore