84 research outputs found
Production of ultracold heteronuclear YbRb* molecules by photoassociation
We have produced ultracold heteronuclear YbRb molecules in a combined
magneto-optical trap by photoassociation. The formation of electronically
excited molecules close to the dissociation limit was observed by trap loss
spectroscopy in mixtures of Rb with Yb and Yb. The
molecules could be prepared in a series of vibrational levels with resolved
rotational structure, allowing for an experimental determination of the
long-range potential in the electronically excited state
Spatial separation in a thermal mixture of ultracold Yb and Rb atoms
We report on the observation of unusually strong interactions in a thermal
mixture of ultracold atoms which cause a significant modification of the
spatial distribution. A mixture of Rb and Yb with a temperature
of a few K is prepared in a hybrid trap consisting of a bichromatic
optical potential superimposed on a magnetic trap. For suitable trap parameters
and temperatures, a spatial separation of the two species is observed. We infer
that the separation is driven by a large interaction strength between
Yb and Rb accompanied by a large three-body recombination rate.
Based on this assumption we have developed a diffusion model which reproduces
our observations
Role of rotational energy component in the dynamics of 16
The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS) and the non-sticking (INS) limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2) and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia
Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
Progress on researches in the field of molecules at cold and ultracold
temperatures is reported in this review. It covers extensively the experimental
methods to produce, detect and characterize cold and ultracold molecules
including association of ultracold atoms, deceleration by external fields and
kinematic cooling. Confinement of molecules in different kinds of traps is also
discussed. The basic theoretical issues related to the knowledge of the
molecular structure, the atom-molecule and molecule-molecule mutual
interactions, and to their possible manipulation and control with external
fields, are reviewed. A short discussion on the broad area of applications
completes the review.Comment: to appear in Reports on Progress in Physic
Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95021/1/palo1108.pd
A Cytoplasmic Complex Mediates Specific mRNA Recognition and Localization in Yeast
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes
Belle II Vertex Detector Performance
The Belle II experiment at the SuperKEKB accelerator (KEK, Tsukuba, Japan) collected its first e+e− collision data in the spring 2019. The aim of accumulating a 50 times larger data sample than Belle at KEKB, a first generation B-Factory, presents substantial challenges to both the collider and the detector, requiring not only state-of-the-art hardware, but also modern software algorithms for tracking and alignment.
The broad physics program requires excellent performance of the vertex detector, which is composed of two layers of DEPFET pixels and four layers of double sided-strip sensors. In this contribution, an overview of the vertex detector of Belle II and our methods to ensure its optimal performance, are described, and the first results and experiences from the first physics run are presented
- …