341 research outputs found

    Nonlinear Fano resonance and bistable wave transmission

    Get PDF
    We consider a discrete model that describes a linear chain of particles coupled to a single-site defect with instantaneous Kerr nonlinearity. We show that this model can be regarded as a nonlinear generalization of the familiar Fano-Anderson model, and it can generate the amplitude depended bistable resonant transmission or reflection. We identify these effects as the nonlinear Fano resonance, and study its properties for continuous waves and pulses.Comment: 9 pages, 14 figure, submitted to Phys. Rev.

    AMBER/VLTI observations of the B[e] star MWC 300

    Get PDF
    Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC 300 with the VLTI/AMBER instrument in the H and K bands and compared these observations with temperature-gradient models to derive model parameters. Results. The measured low visibility values, wavelength dependence of the visibilities, and wavelength dependence of the closure phase directly suggest that MWC 300 consists of a resolved disk and a close binary. We present a model consisting of a binary and a temperature-gradient disk that is able to reproduce the visibilities, closure phases, and spectral energy distribution. This model allows us to constrain the projected binary separation (~4.4 mas or ~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&

    Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces

    Full text link
    International audienceWe demonstrate experimentally a strong interaction and, plasmonic hybridization from a nanosystem having both localized and delocalized surface plasmons modes simultaneously in the presence of a nearby thin continuous metallic film. In situ DC resistance measurement of silver films and percolation theory was used to determine accurately the systems where the percolation threshold exists by distinguishing the nucleation and growth regions of silver films. We found an optimum plasmon hybridization existing in this percolation threshold region which can be verified from the absorption spectra. We interpret our data in terms of a fitting of the absorption spectra to the Fano type line shapes model

    HST/NICMOS2 coronagraphic observations of the circumstellar environment of three old PMS stars: HD 100546, SAO 206462 and MWC 480

    Get PDF
    The close environment of four old Pre-Main Sequence stars has been observed thanks to the coronagraphic mode of the HST/NICMOS2 camera at lambda=1.6 micron. In the course of this program, the detection of a circumstellar annulus around HD 141569 has already been presented in Augereau et al.(1999b). In this paper, we report the detection of an elliptical structure around the Herbig Be star HD 100546 extending from the very close edge of the coronagraphic mask (~50 AU) to 350-380 AU (3.5-3.8 arcsec) from the star. The axis ratio gives a disk inclination of 51+/-3 degrees to the line-of-sight and a position angle of 161+/-5 degrees, measured east of north. At 50 AU, the disk has a surface brightness between 10.5 and 11 mag/arcsec^2, then follows a -2.92+/-0.04 radial power law up to 250-270 AU and finally falls as r^{-5.5+/-0.2}. The inferred optical thickness suggests that the disk is at least marginally optically thick inside 80 AU and optically thin further out. Combined with anisotropic scattering properties, this could explain the shape of a brightness asymmetry observed along the minor axis of the disk. This asymmetry needs to be confirmed. The circumstellar disks around SAO 206462 and MWC 480 are not resolved, leading to constraints on the dust distribution. A tight binary system separated by only 0.32+/-0.04 arcsec is nevertheless detected in the close vicinity of SAO 206462.Comment: 13 pages, accepted for publication in Astronomy & Astrophysic

    Broken symmetries and directed collective energy transport

    Get PDF
    We study the appearance of directed energy current in homogeneous spatially extended systems coupled to a heat bath in the presence of an external ac field E(t). The systems are described by nonlinear field equations. By making use of a symmetry analysis we predict the right choice of E(t) and obtain directed energy transport for systems with a nonzero topological charge Q. We demonstrate that the symmetry properties of motion of topological solitons (kinks and antikinks) are equivalent to the ones for the energy current. Numerical simulations confirm the predictions of the symmetry analysis and, moreover, show that the directed energy current drastically increases as the dissipation parameter α\alpha reduces. Our results generalize recent rigorous theories of currents generated by broken time-space symmetries to the case of interacting many-particle systems.Comment: 4 pages, 2 figure

    IGR J19552+0044: A new asynchronous short period polar: "Filling the gap between intermediate and ordinary polars"

    Full text link
    Based on XMM--Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray source correctly. Extensive multicolor photometric and medium- to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. We found firm evidence of discording spectroscopic (81.29+/-0.01m) and photometric (83.599+/-0.002m) periods that we ascribe to the white dwarf (WD)\ spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength-dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).Comment: 9 pages, 10 figures, A&A accepte

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    The nature of V39: an LBV candidate or LBV impostor in the very low metallicity galaxy IC 1613?

    Full text link
    [abridged] Context: Very few examples of luminous blue variable (LBV) stars or LBV candidates (LBVc) are known, particularly at metallicities below the SMC. The LBV phase is crucial for the evolution of massive stars, and its behavior with metallicity is poorly known. V39 in IC 1613 is a well-known photometric variable, with B-band changes larger than 1mag. over its period. The star, previously proposed to be a projection of a Galactic W Virginis and an IC 1613 red supergiant, shows features that render it a possible LBVc. Method: We investigate mid-resolution blue and red VLT-VIMOS spectra of V39, covering a time span of 40 days, and perform a quantitative analysis of the combined spectrum using the model atmosphere code CMFGEN. Results: We identify strong Balmer and FeII P-Cygni profiles, and a hybrid spectrum resembling a B-A supergiant in the blue and a G-star in the red. No significant Vrad variations are detected, and the spectral changes are small over the photometric period. Our analysis places V39 in the low-luminosity part of the LBV and LBVc region, but it is also consistent with a sgB[e] star. Conclusions: The radial velocity indicates that V39 belongs to IC 1613. The lack of Vrad changes and spectroscopic variations excludes binary scenarios. The features observed are not consistent with a W Virginis star, and this possibility is also discarded. We propose that the star is a B-A LBVc or sgB[e] star surrounded by a thick disk precessing around it. If confirmed, V39 would be the lowest metallicity resolved LBV candidate known to date. Alternatively, it could represent a new transient phase of massive star evolution, an LBV impostor.Comment: In press at A&A. 10 pages, 11 figure

    The Interspersed Spin Boson Lattice Model

    Get PDF
    We describe a family of lattice models that support a new class of quantum magnetism characterized by correlated spin and bosonic ordering [Phys. Rev. Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using Matrix-Product-State methods. Guided by these numerical results, we describe a modified variational ansatz to improve our analytic description of the groundstate at low boson frequencies. Additionally, we introduce an experimental protocol capable of inferring the low-energy excitations of the system by means of Fano scattering spectroscopy. Finally, we discuss the implementation and characterization of this model with current circuit-QED technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    An algebraic approach to the Tavis-Cummings problem

    Full text link
    An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-Cummings (TC) Hamiltonian, based on polynomially deformed su(2), i.e. su_n(2), algebras. In this method the eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order. Generalization to the N-atom case of the Rabi frequency and dressed states is also provided. A remarkable enhancement of spontaneous emission of N atoms in a resonator is found to result from collective effects.Comment: 13 pages, 7 figure
    corecore