57 research outputs found

    The study of 8-Hydroxyquinoline-2-Carboxyllic acid and its metal ion complexing properties

    Get PDF
    The metal ion coordinating properties of the ligand HQC (8-hydroxyquinoline-2- carboxylic acid) were studied by UV-visible spectroscopy and X-ray crystallography. The protonation constants of HQC were determined by monitoring absorbance of 5 x 10-5 M HQC at five different wavelengths in the range 210-300 nm as a function of pH. The protonation constants pK1 and pK2 were determined to be 10.14 and 3.92 at 25 oC in 0.1 M NaClO4. The experiments were repeated with 5 x 10-5 M HQC and 5 x 10-5 M metal ion solutions. These experiments produced two apparent protonation constants (pK’1 and pK’2) that were shifted to lower pH by competition with the metal ion as compared with pK1 and pK2. These were used to calculate equilibrium constants for the metal ions (M) as: M(HQC) + H+ ?? M(HQC)H (pK’1) [1] M + HQC ?? M(HQC) (log[M] + pK1 + pK2 – pK’1 – pK’2) [2] The HQC complexes also gave hydrolysis constants at higher pH according to: M(HQC) + OH- ?? M(HQC)OH [3] Log K1 (eq. 2) was obtained in 0.1 M NaClO4 at 25 oC for a selection of metal ions: Mg(II), 4.93; Ca(II), 6.16; Sr(II), 4.82; Ba(II), 4.10; La(III), 10.13; Gd(III), 9.89; Cu(II), 12.00; Zn(II), 9.10; Cd(II), 8.57; Pb(II), 11.35. The constants were remarkably high for a tridentate ligand with a donor set consisting of a pyridine nitrogen, and a phenolic and a carboxylic oxygen. These were discussed in terms of the high levels of preorganization of HQC, and contrasted with other similar ligands such as 8-hydroxyquinoline and dipicolinic acid. The high stability of HQC complexes is discussed in relation to its possible use in biomedical applications, such as the use of its Gd(III) complex as an MRI imaging agent. The attachment of a proton to the HQC complexes as in equation 1 was of some interest. Accordingly, crystals of [Zn((HQC)H)2] .2H2O (1) and [Cd((HQC)H)2] .2H2O (2) were grown and the structures determined by X-ray crystallography. Crystals of 1 were triclinic, Pi, a = 7.152(3), b = 9.227(4), c = 15.629(7) Å, a = 103.978(7), ß = 94.896(7), ? = 108.033(8)°, Z = 2, R = 0.0499. Crystals of 2 were triclinic, Pi, a = 7.0897(5), b = 9.1674(7), c = 16.0672(11) Å, a = 105.0240(10), ß = 93.9910(10), ? = 107.1270(10)°, Z = 3, R = 0.033. The crystal structures showed that the protons present were indeed attached to the phenolic oxygens, which were coordinated to the metal ions. Of considerable interest was the very short O---O distance of 2.4- 2.5 Å found for water molecules H-bonded to these protons, which is in the range for a very strong H-bond. The structures suggested that in the case of the Cd(II) complex (2) the proton was in one case actually attached to the water molecule to give a hydronium ion H-bonded to the non-protonated phenolic oxygen, while in the Zn(II) complex (1) the H-bond was actually symmetrical with the proton midway between the two oxygens. The significance of these short H-bonds is discussed in relation to their significance in biochemical processes

    Structural and spatially-resolved studies on the hardening of a commercial resin-modified glass-ionomer cement

    Get PDF
    A commercial photopolymerizable resinmodified glass-ionomer (Fuji II LC) was studied using a variety of nuclear magnetic resonance (NMR) techniques. H and F stray-field imaging (STRAFI) enabled to follow the acid–base reaction kinetics in self-cured (SC) samples. Gelation and maturation processes with 25 min and 40 h average time constants, respectively, were distinguished. In self- & photo-cured (SPC) samples, two processes were also observed, which occurred with 2 s and 47 s average time constants. H, Al and Si magic angle spinning (MAS) NMR, C cross-polarization (CP)/MAS NMR and 27Al multiple quanta (MQ)MAS NMR spectroscopy were used to obtain structural information on the glass and cements that were either SC or SPC. The presence of methacrylate groups was identified in the solid component. Unreacted hydroxyl ethylmethacrylate (HEMA) was detected in self-cured cement. Al data showed that approximately 28% and 20% of Al is leached out from glass particles in SC and SPC samples, respectively. The upfield shift detected in 25Si MAS NMR spectra of the cements is consistent with a decrease in the number of Al species in the second coordination sphere of the silicon structures. Scanning electron microscopy (SEM) showed existence of 3D shrinkage of the cement matrix in photo-cured cements.(undefined

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial

    Get PDF
    Background Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects. Methods FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762. Findings Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months. Interpretation Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function. Funding UK Stroke Association and NIHR Health Technology Assessment Programme

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore