87 research outputs found

    Understanding the daily cycle of evapotranspiration: a method to quantify the influence of forcings and feedbacks

    Get PDF
    A method to analyze the daily cycle of evapotranspiration over land is presented. It quantifies the influence of external forcings, such as radiation and advection, and of internal feedbacks induced by boundary layer, surface layer, and land surface processes on evapotranspiration. It consists of a budget equation for evapotranspiration that is derived by combining a time derivative of the Penman–Monteith equation with a mixed-layer model for the convective boundary layer. Measurements and model results for days at two contrasting locations are analyzed using the method: midlatitudes (Cabauw, Netherlands) and semiarid (Niamey, Niger). The analysis shows that the time evolution of evapotranspiration is a complex interplay of forcings and feedbacks. Although evapotranspiration is initiated by radiation, it is significantly regulated by the atmospheric boundary layer and the land surface throughout the day. In both cases boundary layer feedbacks enhance the evapotranspiration up to 20 W m-2 h-1. However, in the case of Niamey this is offset by the land surface feedbacks since the soil drying reaches -30 W m-2 h-1. Remarkably, surface layer feedbacks are of negligible importance in a fully coupled system. Analysis of the boundary layer feedbacks hints at the existence of two regimes in this feedback depending on atmospheric temperature, with a gradual transition region in between the two. In the low-temperature regime specific humidity variations induced by evapotranspiration and dry-air entrainment have a strong impact on the evapotranspiration. In the high-temperature regime the impact of humidity variations is less pronounced and the effects of boundary layer feedbacks are mostly determined by temperature variation

    NAM-SCA: A Nonhydrostatic anelastic model with segmentally constant approximations

    No full text
    International audienceAn atmospheric convective system may be modeled as an ensemble of discrete plume elements. A representation of decomposited plumes provides the basis for mass-flux convective parameterization. A dry version of such a prototype model is constructed in a two-dimensional horizontally periodic domain. Each discrete plume element is approximated by a horizontally homogeneous segment such that the whole system is given by segmentally constant approximations (SCA) in the horizontal direction for each vertical level in a nonhydrostatic anelastic model (NAM). The distribution of constant segments is highly inhomogeneous in space and evolves with time in a highly adaptive manner. The basic modeling strategy from a physical point of view is to activate new segments vertically upward with time when a convective plume is growing and to deactivate segments when a plume event is over. The difference in physical values crossing segment interfaces is used as a criterion for numerically implementing this strategy. Whenever a large difference is found, the given interface is stretched vertically by subdividing an existing segment into two. In turn, when a segment interface difference is found below the threshold, the given interface is removed, thereby merging the two segments into one. This nonhydrostatic anelastic model with segmentally constant approximations (NAM-SCA) is tested on an idealized atmospheric convective boundary layer. It successfully simulates the evolution of convective plumes with a relatively limited number of segments (i.e., high compression) and with a much scarcer distribution of segments over nonplume environments (i.e., extremely inhomogeneous distribution of segments). Overall, this method compresses the size of the model up to 5 times compared to a standard NAM with homogeneous grid distribution without substantially sacrificing numerical accuracy. © 2010 American Meteorological Society

    A new downscaling method for sub-grid turbulence modeling

    Get PDF
    In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small-scale turbulence is evaluated using high-resolution numerical simulations. These high-resolution data are averaged to produce a coarse-grid velocity field, which is then used to drive a complete particle-system-based downscaling. Wind fluctuations and turbulent kinetic energy are compared between the particle simulations and the high-resolution simulation. Despite the simplicity of the physical model used to drive the particles, the results show that the particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher-resolution simulations in order to evaluate the very fine turbulent structures predicted by the particle systems. Finally, a study of the influence of the forcing scale on the particle system is presented

    Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    Get PDF
    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper

    Characteristics of mid‐level clouds over West Africa

    Get PDF
    Mid‐level clouds, located between 2 and 9 km height, are ubiquitous in the tropical belt. However, few studies have documented their characteristics and tried to identify the associated thermodynamic properties, particularly in West Africa. This region is characterized by a strong seasonality with precipitation occurring in the Sahel from June to September (monsoon season). This period also coincides with the annual maximum of the cloud cover. Here, we document the macro‐ and microphysical properties of mid‐level clouds, the environment in which such clouds occur, as well as their radiative properties across West Africa. To do so, we combined high‐resolution observations from two ground‐based sites (including lidar and cloud radar) in contrasted environments: one in the Sahel (Niamey, AMMA campaign, 2006) and the other in the Sahara (Bordj Badji Mokhtar, Fennec campaign, June 2011) along with the merged CloudSat‐CALIPSO satellite products. The results show that mid‐level clouds are found throughout the year with a predominance around the monsoon season early in the morning. They also are preferentially observed in the southern and western parts of West Africa. They are usually thin (most of them are less than 1000 m deep) and as observed in Niamey, mainly composed of liquid water. A clustering method applied to Niamey data allows us to distinguish three different types of cloud: one with low bases, one with high bases and another with large thicknesses. The two first cloud families are capped by an inversion. The last family is associated with a large vertical moisture transport and likely has the highest radiative effect at the Earth's surface among the three cloud types

    The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer

    Get PDF
    The turbulent structure and growth of the remote Saharan atmospheric boundary layer (ABL) is described with in situ radiosonde and aircraft measurements and a large-eddy simulation model. A month of radiosonde data from June 2011 provides a mean profile of the midday Saharan ABL, which is characterized by a well-mixed convective boundary layer, capped by a small temperature inversion (<1K) and a deep, near-neutral residual layer. The boundary layer depth varies by up to 100% over horizontal distances of a few kilometers due to turbulent processes alone. The distinctive vertical structure also leads to unique boundary layer processes, such as detrainment of the warmest plumes across the weak temperature inversion, which slows down the warming and growth of the convective boundary layer. As the boundary layer grows, overshooting plumes can also entrain freetropospheric air into the residual layer, forming a second entrainment zone that acts to maintain the inversion above the convective boundary layer, thus slowing down boundary layer growth further.Asingle-column model is unable to accurately reproduce the evolution of the Saharan boundary layer, highlighting the difficulty of representing such processes in large-scale models. These boundary layer processes are special to the Sahara, and possibly hot, dry, desert environments in general, and have implications for the large-scale structure of the Saharan heat low. The growth of the boundary layer influences the vertical redistribution of moisture and dust, and the spatial coverage and duration of clouds, with large-scale dynamical and radiative implications
    • 

    corecore