118 research outputs found

    Outcomes of the round robin tests of RILEM TC 247-DTA on the durability of alkali-activated concrete

    Get PDF
    Alkali-activated cements, including 'geopolymer' materials, are now reaching commercial uptake in various parts of the world, providing the opportunity to produce concretes of good performance and with reduced environmental footprint compared to established technologies. The development of performance-based specifications for alkali-activated cements and concretes is ongoing in several jurisdictions. However, the technical rigour, and thus practical value, of a performance-based approach to specification of novel cements and concretes will inevitably depend on the availability of appropriate, reliable testing methods, particularly regarding key aspects of durability where degradation mechanisms may be complex and depend on the chemistry and microstructure of the binder. This paper will briefly discuss the activities of RILEM Technical Committee 247-DTA in working to validate durability testing standards for alkali-activated materials, bringing scientific insight into the development of appropriate specifications for these materials

    Impact of environmental moisture on C(3)A polymorphs in the absence and presence of CaSO4 center dot 0.5 H2O

    Get PDF
    The phenomenon of water vapour sorption by anhydrous C3A polymorphs both in the absence and in the presence of CaSO4·0·5 H2O was studied utilising dynamic and static sorption methods. It was found that orthorhombic C3A starts to sorb water at 55% relative humidity (RH) and cubic C3A at 80% RH. Also, C3Ao sorbs a higher amount of water which is predominantly physically bound, whereas C3Ac preferentially interacts with water by chemical reaction. In the presence of calcium sulfate hemihydrate, ettringite was observed as the predominant pre-hydration product for both C3A modifications: that is, ion transport had occurred between C3A and sulfate. Environmental scanning electron microscopic imaging revealed that in a moist atmosphere, a liquid water film condenses on the surface of the phases as a consequence of capillary condensation between the particles. C3A and sulfate can then dissolve and react with each other. Seemingly, pre-hydration is mainly facilitated through capillary condensation and less through surface interaction with gaseous water molecules

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils

    Get PDF
    This paper reports on the physico-chemical response of two lime stabilised sulfate bearing artificial soils subject to the European Accelerated Volumetric Swell Test (EN13286-49). At various intervals during the test, a specimen was removed and subject to compositional and microstructural analysis. Ettringite was formed by both soils types, but with significant differences in crystal morphology. Ettringite crystals formed from kaolin based soils were very small, colloidal in size and tended to form on the surface of other particles. Conversely, those formed from montmorillonite were relatively large and typically formed away from the surface in the pore solution. It was concluded that the mechanism by which ettringite forms is determined by the hydroxide ion concentration in the pore solution and the fundamental structure of the bulk clay. In the kaolin soil, ettringite forms by a topochemical mechanism and expands by crystal swelling. In the montmorillonite soil, it forms by a through-solution mechanism and crystal growth

    RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes

    Get PDF
    The RILEM technical committee TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ conducted a round robin testing programme to determine the validity of various durability testing methods, originally developed for Portland cement based-concretes, for the assessment of the durability of alkali-activated concretes. The outcomes of the round robin tests evaluating sulfate resistance, alkali-silica reaction (ASR) and freeze–thaw resistance are presented in this contribution. Five different alkali-activated concretes, based on ground granulated blast furnace slag, fly ash, or metakaolin were investigated. The extent of sulfate damage to concretes based on slag or fly ash seems to be limited when exposed to an Na2SO4 solution. The mixture based on metakaolin showed an excessive, very early expansion, followed by a dimensionally stable period, which cannot be explained at present. In the slag-based concretes, MgSO4 caused more expansion and visual damage than Na2SO4; however, the expansion limits defined in the respective standards were not exceeded. Both the ASTM C1293 and RILEM AAR-3.1 test methods for the determination of ASR expansion appear to give essentially reliable identification of expansion caused by highly reactive aggregates. Alkali-activated materials in combination with an unreactive or potentially expansive aggregate were in no case seen to cause larger expansions; only the aggregates of known very high reactivity were seen to be problematic. The results of freeze–thaw testing (with/without deicing salts) of alkali-activated concretes suggest an important influence of the curing conditions and experimental conditions on the test outcomes, which need to be understood before the tests can be reliably applied and interpreted

    Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1

    Get PDF
    A primary aim of RILEM TC 267-TRM: “Tests for Reactivity of Supplementary Cementitious Materials (SCMs)” is to compare and evaluate the performance of conventional and novel SCM reactivity test methods across a wide range of SCMs. To this purpose, a round robin campaign was organized to investigate 10 different tests for reactivity and 11 SCMs covering the main classes of materials in use, such as granulated blast furnace slag, fly ash, natural pozzolan and calcined clays. The methods were evaluated based on the correlation to the 28 days relative compressive strength of standard mortar bars containing 30% of SCM as cement replacement and the interlaboratory reproducibility of the test results. It was found that only a few test methods showed acceptable correlation to the 28 days relative strength over the whole range of SCMs. The methods that showed the best reproducibility and gave good correlations used the R3 model system of the SCM and Ca(OH)2, supplemented with alkali sulfate/carbonate. The use of this simplified model system isolates the reaction of the SCM and the reactivity can be easily quantified from the heat release or bound water content. Later age (90 days) strength results also correlated well with the results of the IS 1727 (Indian standard) reactivity test, an accelerated strength test using an SCM/Ca(OH)2-based model system. The current standardized tests did not show acceptable correlations across all SCMs, although they performed better when latently hydraulic materials (blast furnace slag) were excluded. However, the Frattini test, Chapelle and modified Chapelle test showed poor interlaboratory reproducibility, demonstrating experimental difficulties. The TC 267-TRM will pursue the development of test protocols based on the R3 model systems. Acceleration and improvement of the reproducibility of the IS 1727 test will be attempted as well

    A Novel, Non-Apoptotic Role for Scythe/BAT3: A Functional Switch between the Pro- and Anti-Proliferative Roles of p21 during the Cell Cycle

    Get PDF
    BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.Dissertatio

    Report of RILEM TC 267-TRM phase 3: validation of the R3 reactivity test across a wide range of materials

    Get PDF
    RILEM TC 267 TRM– “Tests for Reactivity of Supplementary Cementitious Materials” recommends the Rapid Reliable Relevant (R3) test as a method for determining the chemical reactivity of supplementary cementitious materials (SCMs) in Portland cement blends. In this paper, the R3 test was applied to 52 materials from a wide range of conventional and alternative SCMs with the aim to validate such test. An excellent correlation was found between the cumulative heat release and the bound water determined following the R3 test method. Comparison of the R3 test results to mortar compressive strength development showed that all conventional SCMs (e.g. blast furnace slag and fly ashes) followed the same trend, with the notable exception of very reactive calcined kaolinitic clays. It is discussed, through an in-depth statistical regression analysis of the R3 reactivity test results and the 28 days relative compressive strengths, how reactivity threshold values for classification of the chemical reactivity of SCMs could be proposed based on the R3 test results

    Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials

    Get PDF
    The results of phase 1 of an interlaboratory test, coordinated by the RILEM TC 267-TRM “Tests for Reactivity of Supplementary Cementitious Materials” showed that the R3 (rapid, relevant, reliable) test method, by measurement of heat release or bound water, provided the most reliable and relevant determination of the chemical reactivity of supplementary cementitious materials (SCMs), compared to other test methods. The phase 2 work, described in this paper aimed to improve the robustness of the test procedure and to develop precision statements for the consolidated test procedure. The effect of the pre-mixing and mixing conditions, and the impact of the mix design on the test method robustness were assessed and fixed for optimal conditions to carry out the R3 heat release test. The effect of the drying step was evaluated to define the R3 bound water test procedure in more detail. Finally, the robustness of the consolidated final test methods was determined by an interlaboratory study to define the precision statements

    Examination of alkali-activated material nanostructure during thermal treatment

    Get PDF
    The key nanostructural changes occurring in a series of alkali-activated materials (AAM) based on blends of slag and fly ash precursors during exposure to temperatures up to 1000 °C are investigated. The main reaction product in each AAM is a crosslinked sodium- and aluminium-substituted calcium silicate hydrate (C-(N)-A-S-H)-type gel. Increased alkali content promotes the formation of an additional sodium aluminosilicate hydrate (N-A-S-(H)) gel reaction product due to the structural limitations on Al substitution within the C-(N)-A-S-H gel. Heating each AAM to 1000 °C results in the crystallisation of the disordered gels and formation of sodalite, nepheline and wollastonite. Increased formation of N-A-S-(H) reduces binder structural water content after thermal treatment and correlates closely with previous observations of improved strength retention and reduced microcracking in these AAM after heating to 1000 °C. This provides new insight into thermally induced changes to gel atomic structure and thermal durability of C-(N)-A-S-H/N-A-S-H gel blends which are fundamental for the development of new fire-resistant construction materials
    corecore