475 research outputs found

    Characterization of the Electromagnetic Field Generated by Eddy Current Probes

    Get PDF
    Considerable inspection efforts are required to achieve quality requirements for mechanical parts during manufacturing and maintenance operational safety for aging power stations, fleets of civil and military aircraft, trains and offshore structures. Problems arising from parts made of metallic materials are mainly due to corrosion and fatigue crack propagation. Currently many of these inspections are carried out using Eddy Current methods. The detection and the quantification (sizing) of defects in metallic materials with Eddy Current (EC) techniques are based on the performances of the EC equipment and probes. The EC probes, which get all the information from the materials to be inspected, need to be well characterized to ensure the quality of the Eddy Current inspection. Their characterization has to take into account their geometry, their electrical and electromagnetic characteristics as well as their behavior in relation to materials and defects. The usual method for characterizing an Eddy Current probe is to measure its response to reference blocks and reference defects in terms of the resulting impedance or induced voltage in the receiving coil. Few papers [1,2] describe the characterization of the electromagnetic field generated by EC probes. The knowledge of this electromagnetic field is very important for a better understanding of the field repartition and its influence on defects but also to compare probes between them and to follow their evolution. This measurement system could also be a good method to validate electromagnetic model and to design EC probes. We describe in this paper an instrumentation for a direct measurement of the electromagnetic field of EC probes in emitting in air and in transmission through materials

    Ultrasonic Signal Processing Applied to Flaw Characterization in Composite Materials

    Get PDF
    Composite material evaluation still remains a tricky business for various configurations of materials, structures, and of manufacturing and aging processes. The main issue is how to distinguish critical defects in materials which provide naturally a low S/N ratio. Other diagnosis problems such as bounding and water ingress, or corrosion for metallics will benefit from the utilization of signal processing and in particular of the Wavelet Transformation which should offer a more exhaustive and smart approach in signal processing than the standard FFT or Split spectrum procedures

    Use of albumin infusion for cirrhosis-related complications. An international position statement

    Get PDF
    Background & Aims: Numerous studies have evaluated the role of human albumin (HA) in managing various liver cirrhosis-related complications. However, their conclusions remain partially controversial, probably because HA was evaluated in different settings, including indications, patient characteristics, and dosage and duration of therapy. Methods: Thirty-three investigators from 19 countries with expertise in the management of liver cirrhosis-related complications were invited to organise an International Special Interest Group. A three-round Delphi consensus process was conducted to complete the international position statement on the use of HA for treatment of liver cirrhosis-related complications. Results: Twelve clinically significant position statements were proposed. Short-term infusion of HA should be recommended for the management of hepatorenal syndrome, large volume paracentesis, and spontaneous bacterial peritonitis in liver cirrhosis. Its effects on the prevention or treatment of other liver cirrhosis-related complications should be further elucidated. Long-term HA administration can be considered in specific settings. Pulmonary oedema should be closely monitored as a potential adverse effect in cirrhotic patients receiving HA infusion. Conclusions: Based on the currently available evidence, the international position statement suggests the potential benefits of HA for the management of multiple liver cirrhosis-related complications and summarises its safety profile. However, its optimal timing and infusion strategy remain to be further elucidated. Impact and implications: Thirty-three investigators from 19 countries proposed 12 position statements on the use of human albumin (HA) infusion in liver cirrhosis-related complications. Based on current evidence, short-term HA infusion should be recommended for the management of HRS, LVP, and SBP; whereas, long-term HA administration can be considered in the setting where budget and logistical issues can be resolved. However, pulmonary oedema should be closely monitored in cirrhotic patients who receive HA infusion

    On the crystal lattice parameters of graphite-like phases of the B-C system

    Full text link
    The structure of graphite-like BCx phases (x = 1, 1.5, 3, 4, 32) has been studied using conventional X-ray diffraction. The results have been obtained, which unambiguously point to turbostratic (one- dimensionally disordered) structure of all phases under study. The crystal lattice parameters, sizes of coherent scattering domains, and microstrain values have been defined, which have allowed us to find a correlation between the structure and stoichiometry of the phases synthesized at the same temperature

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Public values for energy system change

    Get PDF
    In this paper we discuss the importance of framing the question of public acceptance of sustainable energy transitions in terms of values and a ‘whole-system’ lens. This assertion is based on findings arising from a major research project examining public values, attitudes and acceptability with regards to whole energy system change using a mixed-method (six deliberative workshops, n=68, and a nationally representative survey, n = 2441), interdisciplinary approach. Through the research we identify a set of social values associated with desirable energy futures in the UK, where the values represent identifiable cultural resources people draw on to guide their preference formation about particular aspects of energy system change. As such, we characterise public perspectives as being underpinned by six value clusters relating to efficiency and wastefulness, environment and nature, security and stability, social justice and fairness, autonomy and power, and processes and change. We argue that this ‘value system’ provides a basis for understanding core reasons for public acceptance or rejection of different energy system aspects and processes. We conclude that a focus on values that underpin more specific preferences for energy system change brings insights that could provide a basis for improved dialogue, more robust decision- making, and for anticipating likely points of conflict in energy transitions

    Experimental study and critical review of structural, thermodynamic and mechanical properties of superhard refractory boron suboxide, B6O

    Full text link
    In the present paper we performed the analysis of available data on structural, thermodynamic and mechanical properties of B6O. Although the compound is known for half a century and has been extensively studied, many properties of this boron-rich solid remain unknown or doubtful. Semi-empirical analysis of our experimental and literature data allowed us to choose the best values of main thermodynamic and mechanical characteristics among previously reported data, to predict the thermoelastic equation of state of B6O, and dependence of its hardness on non-stoichiometry and temperature

    Rheological properties of magnetic biogels

    Get PDF
    We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, andAgencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178
    corecore