92 research outputs found

    The AMMA mulid network for aerosol characterization in West Africa

    Full text link
    Three ground based portable low power consumption microlidars (MULID) have been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analyses (AMMA) project for the characterization of aerosols optical properties. A description of the instrument and a discussion of the data inversion method, including a careful analysis of measurement uncertainties (systematic and statistical errors) are presented. Some case studies of typical lidar profiles observed over the Banizoumbou site during 2006 are shown and discussed with respect to the AERONET 7-day back-trajectories and the biomass burning emissions from the Combustion Emission database for the AMMA campaign

    West African Monsoon water cycle: 1. A hybrid water budget data set

    No full text
    International audienceThis study investigates the West African Monsoon water cycle with the help of a new hybrid water budget data set developed within the framework of the African Monsoon Multidisciplinary Analyses. Surface water and energy fluxes are estimated from an ensemble of land surface model simulations forced with elaborate precipitation and radiation products derived from satellite observations, while precipitable water tendencies are estimated from numerical weather prediction analyses. Vertically integrated atmospheric moisture flux convergence is estimated as a residual. This approach provides an advanced, comprehensive atmospheric water budget, including evapotranspiration, rainfall, and atmospheric moisture flux convergence, together with other surface fluxes such as runoff and net radiation. The annual mean and the seasonal cycle of the atmospheric water budget are presented and the couplings between budget terms are discussed for three climatologically distinct latitudinal bands between 6°N and 20°N. West Africa is shown to be alternatively a net source and sink region of atmospheric moisture, depending on the season (a source during the dry season and a sink during the wet season). Several limiting and controlling factors of the regional water cycle are highlighted, suggesting strong sensitivity to atmospheric dynamics and surface radiation. Some insight is also given into the underlying smaller-scale processes. The relationship between evapotranspiration and precipitation is shown to be very different between the Sahel and the regions more to the south and partly controlled by net surface radiation. Strong correlations are found between precipitation and moisture flux convergence over the whole region from daily to interannual time scales. Causality is also established between monthly mean anomalies. Hence, precipitation anomalies are preceded by moisture flux convergence anomalies and followed by moisture flux divergence and evapotranspiration anomalies. The results are discussed in comparison to other studies

    Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity

    Get PDF
    This work was supported by grants from Institut National de la Sante et de la Recherche Medicale (Inserm) – France, Universite Pierre et Marie Curie (UPMC) – France, Agence National de la Recherche sur le Sida et les Hepatites (ANRS) – France (n° N14015DR) and PHC-Tassili (11MDU826). MD was supported by ANRS (grant ASA14013DRA). YM was supported by French Ministry for Higher Education and Research and by the Ligue contre le Cancer (grant n° GB/MA/VSP-10504)

    Higher Rates of Hemolysis Are Not Associated with Albuminuria in Jamaicans with Sickle Cell Disease

    Get PDF
    BACKGROUND: Albuminuria is a marker of glomerular damage in Sickle Cell Disease (SCD). In this study, we sought to determine the possible predictors of albuminuria in the two more prevalent genotypes of SCD among the Jamaica Sickle Cell Cohort Study participants. METHODS: An age-matched cohort of 122 patients with HbSS or HbSC genotypes had measurements of their morning urine albumin concentration, blood pressure, body mass index, haematology and certain biochemistry parameters done. Associations of albuminuria with possible predictors including hematological parameters, reticulocyte counts, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels were examined using multiple regression models. RESULTS: A total of 122 participants were recruited (mean age 28.6 years ±2.5 years; 85 HbSS, 37 HbSC). 25.9% with HbSS and 10.8% with HbSC disease had microalbuminuria (urine albumin/creatinine ratio  =  30-300 mg/g of creatinine) whereas 16.5% of HbSS and 2.7% of HbSC disease had macroalbuminuria (urine albumin/creatinine ratio>300 mg/g of creatinine). Mean arterial pressure, hemoglobin levels, serum creatinine, reticulocyte counts and white blood cell counts were statistically significant predictors of albuminuria in HbSS, whereas white blood cell counts and serum creatinine predicted albuminuria in HbSC disease. Both markers of chronic hemolysis, i.e. AST and LDH levels, showed no associations with albuminuria in either genotype. CONCLUSIONS: Renal disease, as evidenced by excretion of increased amounts of albumin in urine due to a glomerulopathy, is a common end-organ complication in SCD. It is shown to be more severe in those with HbSS disease than in HbSC disease. Rising blood pressure, lower hemoglobin levels and higher white blood cell counts are hints to the clinician of impending renal disease, whereas higher rates of hemolysis do not appear to play a role in this complication of SCD

    Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity

    Get PDF
    Background & Aims: Hepatitis B virus (HBV) RNA can undergo alternative splicing, but the relevance of this post-transcriptional regulation remains elusive. The mechanism of HBV alternative splicing regulation and its impact on liver pathogenesis were investigated. Methods: HBV RNA-interacting proteins were identified by RNA pull-down, combined with mass spectrometry analysis. HBV splicing regulation was investigated in chemically and surgically induced liver damage, in whole HBV genome transgenic mice and in hepatoma cells. Viral and endogenous gene expression were quantified by quantitative reverse transcription polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay. Resident liver immune cells were studied by fluorescence-activated cell sorting. Results: HBV pregenomic RNA-interacting proteins were identified and 15% were directly related to the splicing machinery. Expression of these splicing factors was modulated in HBV transgenic mice with liver injuries and contributed to an increase of the HBV spliced RNA encoding for HBV splicing-generated protein (HBSP). HBSP transgenic mice with chemically induced liver fibrosis exhibited attenuated hepatic damage. The protective effect of HBSP resulted from a decrease of inflammatory monocyte/macrophage recruitment through downregulation of C-C motif chemokine ligand 2 (CCL2) expression in hepatocytes. In human hepatoma cells, the ability of HBSP to control CCL2 expression was confirmed and maintained in a whole HBV context. Finally, viral spliced RNA detection related to a decrease of CCL2 expression in the livers of HBV chronic carriers underscored this mechanism. Conclusion: The microenvironment, modified by liver injury, increased HBSP RNA expression through splicing factor regulation, which in turn controlled hepatocyte chemokine synthesis. This feedback mechanism provides a novel insight into liver immunopathogenesis during HBV infection. Lay summary: Hepatitis B virus persists for decades in the liver of chronically infected patients. Immune escape is one of the main mechanisms developed by this virus to survive. Our study highlights how the crosstalk between virus and liver infected cells may contribute to this immune escape

    The possible role of local air pollution in climate change in West Africa

    Get PDF
    The climate of West Africa is characterized by a sensitive monsoon system that is associated with marked natural precipitation variability. This region has been and is projected to be subject to substantial global and regional-scale changes including greenhouse-gas-induced warming and sea-level rise, land-use and land-cover change, and substantial biomass burning. We argue that more attention should be paid to rapidly increasing air pollution over the explosively growing cities of West Africa, as experiences from other regions suggest that this can alter regional climate through the influences of aerosols on clouds and radiation, and will also affect human health and food security. We need better observations and models to quantify the magnitude and characteristics of these impacts
    • 

    corecore