127 research outputs found
The use of ALD and PVD coatings as defect sealants to increase the corrosion resistance of thermal spray coatings
Thermal spray coatings are widely used to improve the surface properties of materials, in particular the wear and oxidation resistance. Nevertheless, the corrosion resistance is slightly increased due to the fact that this type of coatings present some internal defects (pores, cracks) that allow the corrosive media to penetrate up to the substrate, that undergoes to corrosion degradation. The amount of these defects is strongly influenced by both the deposition technique and the material deposited.
The aim of this work is to seal the internal porosities of the thermal spray coatings by the use of both PVD and ALD coatings or the combination of the two. The thermal spray coating analysed in this work is a pure alumina coating, deposited by Air Plasma Spray (APS) technique, that has been sealed with CrN coating, deposited by PVD (Physical Vapour Deposition) technique, and/or TiO2 coatings, deposited by ALD (Atomic Layer Deposition). The substrate used is a common medium C steel.
The samples were then characterized in order to determine the microstructure (SEM+EDXS, light microscope) and the chemical composition (Rf-GDOES elemental profiling), that is important to determine the depth of penetration of the PVD and/or ALD coating inside the thermal spray deposit.
Afterwards, a detailed electrochemical characterization in 3,5wt% NaCl aqueous solution was performed to verify the efficiency of the sealant treatment. In detail, a monitor in function of the time of the OCP potential was performed up to 24h of immersion time. In addition, potentiodynamic tests were performed using a 3 electrode electrochemical cell (CE: Pt wire, RE: Ag/AgCl). The same tests were then performed on the same samples that present an artificial defect produced by Rf-GDOES. The main goal of these tests is to determine the maximum depth of a defect that can allow the corrosive media to penetrate the thermal spray coating.
Preliminary results showed that the use of PVD and ALD coatings as sealants can reduce the permeation of the corrosive media on the substrate
The Use of Thin Films as Defect Sealants to Increase the Corrosion Resistance of Thermal Spray Coatings
Thermal spray-coated components are widely used as wear-resistant coatings in many applications. However, these coatings have high levels of discontinuities that affect the corrosion resistance of the coated system. To reduce this problem, these coatings are usually sealed with liquid sealants (metals, organic or inorganic). The aim of this work is to seal the surface discontinuities of thermal-sprayed coatings using PVD and/or ALD coatings. To this end, CrN (arc deposition PVD) and TiO2 (ALD) coatings were deposited on thermal-sprayed alumina coatings. The samples produced were then analysed in both cross-sectional and planar views to detect the possible permeation of the thin film coatings into the thermal spray defects. Rf-GDOES measurements were performed to detect the very thin ALD deposit on the surface. The corrosion resistance of the sealed coatings was verified with immersion tests, wherein the OCP was monitored for 24 h, and potentiodynamic tests were performed after 15 min and 24 h immersions. The results showed that the thin films were not able to block the permeation of corrosive media, but they could reduce the permeation of corrosive media with a beneficial behaviour on corrosion resistance
Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients
Monoclonal antibodies against SARS-CoV-2 to prevent COVID-19 worsening in a large multicenter cohort
Objective: Monoclonal antibodies (mAbs) against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reduced Coronavirus Disease 2019 (COVID-19) hospitalizations in people at risk of clinical worsening. Real-world descriptions are limited. Methods: CONDIVIDIAMO, a two-year multicenter observational study, consecutively enrolled SARS-CoV-2 outpatients with ≥1 risk factor for COVID-19 progression receiving mAbs. Demographic data, underlying medical condition, type of mAbs combination received, duration of symptoms before mAbs administration, COVID-19 vaccination history, were collected upon enrolment and centrally recorded. Data on outcomes (hospitalizations, reasons of hospitalization, deaths) were prospectively collected. The primary endpoint was the rate of hospitalization or death in a 28-day follow-up, whichever occurred first; subjects were censored at the day of last follow-up or up to 28 days. The Kaplan-Meier method was used to estimate the incidence rate curve in time. The Cox regression model was used to assess potential risk factors for unfavorable outcome. Results were shown as hazard ratio (HR) along with the corresponding 95 % Confidence Interval (95%CI). Results: Among 1534 subjects (median [interquartile range, IQR] age 66.5 [52.4-74.9] years, 693 [45.2 %] women), 632 (41.2 %) received bamlanivimab ± etesevimab, 209 (13.6 %) casirivimab/imdevimab, 586 (38.2 %) sotrovimab, 107 (7.0 %) tixagevimab/cilgavimab. After 28-day follow-up, 87/1534 (5.6 %, 95%CI: 4.4%-6.8 %) met the primary outcome (85 hospitalizations, 2 deaths). Hospitalizations for COVID-19 (52, 3.4 %) occurred earlier than for other reasons (33, 2.1 %), after a median (IQR) of 3.5 (1-7) versus 8 (3-15) days (p = 0.006) from mAbs administration.In a multivariable Cox regression model, factors independently associated with increased hospitalization risk were age (hazard ratio [HR] 1.02, 95%CI 1.00-1.03, p = 0.021), immunodeficiency (HR 1.78, 95%CI 1.11-2.85, p = 0.017), pre-Omicron calendar period (HR 1.66, 95%CI 1.02-2.69, p = 0.041). Conclusions: MAbs real-world data over a 2-year changing pandemic landscape showed the feasibility of the intervention, although the hospitalization rate was not negligible. Immunosuppressed subjects remain more at risk of clinical worsening
Autophagy as a new therapeutic target in Duchenne muscular dystrophy
A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans
Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) specific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6,809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosinophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA
Chromogranin-A production and fragmentation in patients with Takayasu arteritis
BACKGROUND:
Chromogranin-A (CgA) is a secretory protein processed into peptides that regulate angiogenesis and vascular cells activation, migration and proliferation. These processes may influence arterial inflammation and remodelling in Takayasu arteritis (TA).
METHODS:
Plasma levels of full-length CgA (CgA439), CgA fragments lacking the C-terminal region (CgA-FRs) and the N-terminal fragment, CgA1-76 (vasostatin-1, VS-1) were analysed in 42 patients with TA and 20 healthy age-matched controls. Vascular remodelling was longitudinally assessed by imaging. CgA peptides were related to markers of systemic and local inflammation, disease activity and vascular remodelling.
RESULTS:
Levels of CgA-FRs and VS-1 were increased in TA. Treatment with proton-pump inhibitors (PPIs) and arterial hypertension partially accounted for CgA levels and high inter-patient variability. CgA439, CgA-FRs and VS-1 levels did not reflect disease activity or extent. Markers of systemic or local inflammation correlated with higher CgA-FRs and VS-1 in normotensive patients and with higher CgA439 in hypertensive patients. Treatment with non-biologic anti-rheumatic agents was associated with increased CgA-FRs and a distinctive regulation of CgA processing. Reduced blood levels of anti-angiogenic CgA peptides were associated with vascular remodelling in the groups of patients on PPIs and with arterial hypertension.
CONCLUSIONS:
The plasma levels of CgA fragments are markedly increased in TA as a consequence of disease- and therapy-related variables. Anti-angiogenic forms of CgA may limit vascular remodelling. Given the effect of the various CgA peptides, it is advisable to limit the therapeutic prescriptions that might influence CgA-derived peptide levels to clearly agreed medical indications until further data become available
An Intense and Short-Lasting Burst of Neutrophil Activation Differentiates Early Acute Myocardial Infarction from Systemic Inflammatory Syndromes
BACKGROUND: Neutrophils are involved in thrombus formation. We investigated whether specific features of neutrophil activation characterize patients with acute coronary syndromes (ACS) compared to stable angina and to systemic inflammatory diseases. METHODS AND FINDINGS: The myeloperoxidase (MPO) content of circulating neutrophils was determined by flow cytometry in 330 subjects: 69 consecutive patients with acute coronary syndromes (ACS), 69 with chronic stable angina (CSA), 50 with inflammation due to either non-infectious (acute bone fracture), infectious (sepsis) or autoimmune diseases (small and large vessel systemic vasculitis, rheumatoid arthritis). Four patients have also been studied before and after sterile acute injury of the myocardium (septal alcoholization). One hundred thirty-eight healthy donors were studied in parallel. Neutrophils with normal MPO content were 96% in controls, >92% in patients undergoing septal alcoholization, 91% in CSA patients, but only 35 and 30% in unstable angina and AMI (STEMI and NSTEMI) patients, compared to 80%, 75% and 2% of patients with giant cell arteritis, acute bone fracture and severe sepsis. In addition, in 32/33 STEMI and 9/21 NSTEMI patients respectively, 20% and 12% of neutrophils had complete MPO depletion during the first 4 hours after the onset of symptoms, a feature not observed in any other group of patients. MPO depletion was associated with platelet activation, indicated by P-selectin expression, activation and transactivation of leukocyte β2-integrins and formation of platelet neutrophil and -monocyte aggregates. The injection of activated platelets in mice produced transient, P-selectin dependent, complete MPO depletion in about 50% of neutrophils. CONCLUSIONS: ACS are characterized by intense neutrophil activation, like other systemic inflammatory syndromes. In the very early phase of acute myocardial infarction only a subpopulation of neutrophils is massively activated, possibly via platelet-P selectin interactions. This paroxysmal activation could contribute to occlusive thrombosis
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
- …