8 research outputs found

    Remineralization rate of terrestrial DOC as inferred from CO2 supersaturated coastal waters

    Get PDF
    Coastal seas receive large amounts of terrestrially derived organic carbon (OC). The fate of this carbon, and its impact on the marine environment, is however poorly understood. Here we combine underway CO2 partial pressure (pCO(2)) measurements with coupled 3-D hydrodynamical-biogeochemical modelling to investigate whether remineralization of terrestrial dissolved organic carbon (tDOC) can explain CO2 supersaturated surface waters in the Gulf of Bothnia, a subarctic estuary. We find that a substantial remineralization of tDOC and a strong tDOC-induced light attenuation dampening the primary production are required to reproduce the observed CO2 supersaturated waters in the nearshore areas. A removal rate of tDOC of the order of 1 year, estimated in a previous modelling study in the same area, gives a good agreement between modelled and observed pCO(2). The remineralization rate is on the same order as bacterial degradation rates calculated from published incubation experiments, suggesting that bacteria has the potential to cause this degradation. Furthermore, the observed high pCO(2) values during the ice-covered season argue against photochemical degradation as the main removal mechanism. All of the remineralized tDOC is outgassed to the atmosphere in the model, turning the northernmost part of the Gulf of Bothnia into a source of CO2 to the atmosphere.peerReviewe

    Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Get PDF
    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy‐permitting regional ocean model, we present a suite of simulations forced by the same time‐mean fields, but with different atmospheric and remote ocean variability. These eddy‐permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies

    Nemo-Nordic 1.0 : a NEMO-based ocean model for the Baltic and North seas - research and operational applications

    Get PDF
    We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea

    Nordic seas acidification. In open review for Biogeosciences

    No full text
    Being windows to the deep ocean, the Nordic Seas play an important role in transferring anthropogenic carbon, and thus ocean acidification, to the abyss. Due to its location in high latitudes, it is further more sensitive to acidification compared with many other oceanic regions. Here we make a detailed investigation of the acidification of the Nordic Seas, and its drivers, since pre-Industrial to 2100 by using in situ measurements, gridded climatological data, and simulations from one Earth System Model (ESM). In the last 40 years, pH has decreased by 0.11 units in the Nordic Seas surface waters, a change that is twice as large as that between 1850–1980. We find that present trends are larger than expected from the increase in atmospheric CO2 alone, which is related to a faster increase in the seawater pCO2 compared with that of the atmosphere, i.e. a weakening of the pCO2 undersaturation of the Nordic Seas. The pH drop, mainly driven by an uptake of anthropogenic CO2, is significant all over the Nordic Seas, except for in the Barents Sea Opening, where it is counteracted by a significant increase in alkalinity. We also find that the acidification signal penetrates relatively deep, in some regions down to 2000 m. This has resulted in a significant decrease in the aragonite saturation state, which approaches undersaturation at 1000–2000 m in the modern ocean. Future scenarios suggest an additional drop of 0.1–0.4 units, depending on the emission scenario, in surface pH until 2100. In the worst case scenario, RCP8.5, the entire water column will be undersaturated with respect to aragonite by the end of the century, threatening Nordic Seas cold-water corals and their ecosystems. The model simulations suggest that aragonite undersaturation can be avoided at depths where the majority of the cold-water corals live in the RCP2.6 and RCP4.5 scenarios. As these results are based on one model only, we request additional observational and model studies to better quantify the transfer of anthropogenic CO2 to deep waters and its effect on future pH in the Nordic Sea

    Predictable Variations of the Carbon Sinks and Atmospheric CO<sub>2</sub> Growth in a Multi‐Model Framework

    Get PDF
    International audienceInter‐annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year‐to‐year atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a multi‐model framework comprising prediction systems initialized by the observed state of the physical climate, we find a predictive skill for the global ocean carbon sink of up to 6 years for some models. Longer regional predictability horizons are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra‐tropics enabled by the initialization of the physical climate. We further show that anomalies of atmospheric CO2 growth rate inferred from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon
    corecore