112 research outputs found

    Resistance Breeding in Apple at Dresden-Pillnitz

    Get PDF
    Resistance breeding in apple has a long tradition at the Institute of Fruit Breeding now Julius Kuehn-institute in Dresden-Pillnitz. The breeding was aimed at the production of multiple resistance cultivars to allow a more sustainable and environmentally friendly production of apple. In the last decades a series of resistant cultivars (Re®-cultivars) bred in Dresden-Pillnitz has been released, ‘Recolor’ and ‘Rekarda’ in 2006. The main topic in the resistance breeding programme was scab resistance and the donor of scab resistance in most cultivars was Malus x floribunda 821. Due to the development of strains that are able to overcome resistance genes inherited by M. x floribunda 821 and due to the fact that single resistance genes can be broken easily, pyramiding of resistance genes is necessary. Besides scab, fire blight and powdery mildew are the main disease for which a pyramiding of genes is aspired in Pillnitz. Biotechnical approaches are necessary for the early detection of pyramided resistance genes in breeding clones. This paper will give an overview of the resistance breeding of apple in Pillnitz and the methods used

    Construction of an integrated consensus map of the Apple genome based on four mapping populations

    Get PDF
    An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1¿=¿Discovery × TN10-8, C2¿=¿Fiesta × Discovery, C3¿=¿Discovery × Prima, C4¿=¿Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female¿male maps were built for each population using common female¿male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (¿ 2¿=¿16.53, df¿=¿16, p¿=¿0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female¿male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression

    Molekularbiologische Charakterisierung der Lipoxygenase-Genfamilie des Apfels im Hinblick auf die Aromastoffproduktion in reifenden Früchten

    Get PDF
    Molecular characterization of the lipoxygenase gene family in apple (Malus domestica Borkh.) contributing to the production of flavour compounds in ripening fruitsZusammenfassungLipoxygenasen (LOXs) bilden wichtige Vorstufen für aromarelevante flüchtige Substanzen in reifen Früchten. Innerhalb des hier vorgestellten Projektes sollen Mitglieder der LOXGenfamilie und deren Genprodukte im Kulturapfel umfassend identifiziert und charakterisiert werden. Es werden erste Ergebnisse aus bioinformatischen Sequenz-untersuchungen sowie zur PCR-basierten Klonierung vollständiger LOX-Gene des Apfels präsentiert. Das Projekt wird zum besseren Verständnis der Entstehung von Aromamustern bei Obstarten beitragen und über die Entwicklung eines funktionalen Markersystems für die Züchtung auch einen praktischen Anwendungsbezug besitzen. Stichworte: Lipoxygenase, Aroma, Apfel (Malus)AbstractLipoxygenases (LOXs) are important enzymes that provide among others precursors for fruity volatiles in ripe apples. During the project presented in this paper, LOX gene family members and their gene products will be identified and characterized in the cultivated apple. The subsequent article introduces the scientific background and presents some initial results of bioinformatic sequence studies as well as from PCR-based full-length cloning of LOX genes. Available Malus databases are screened for LOX nucleotide sequences, putative LOX genes will be mapped, temporal and spatial expression patterns determined in different fruit stages and candidate genes functionally characterized. The data will finally be used to develop functional markers to support molecular breeding and to enable a more efficient documentation of biodiversity of aroma patterns in Malus gene bank accessions, apple cultivars and breeding material. Keywords: lipoxygenase, aroma, apple (Malus

    Resistenzzüchtung in Dresden-Pillnitz - Der Apfel

    Get PDF
    The Institute of Fruit Breeding has a long tradition in breeding resistant apple cultivars. Systematic resistance breeding started in the 1930 ties in Müncheberg. Material developed in Müncheberg was transferred in the 1970 ties to the Institute for Fruit Research, the antecessor of the Institute of Fruit Breeding. Based on this material, a couple of multiple resistant cultivars were generated. The time schedule for combining biotic and abiotic resistant traits which demonstrates the long-lasting period necessary for systematic resistance breeding is given. An overview of resistant cultivars of Dresden-Pillnitz and the respective resistant traits is presented. This assortment of cultivars was developed to provide a resistant cultivar for each ripening group and every application in fruit growing. Modern resistance breeding is focused on quality and combination of different resistance genes for each pathogene to achieve durable resistance. Selection is facilitated by genetic markers. Likewise the look for new resistance genes, the analyses of genetics and the development of basic material are main areas of interest. Practical approaches in apple breeding to reach these aims are reported

    Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres

    Get PDF
    Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9:GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes

    The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species

    Get PDF
    Adaptation, which induces differentiation between populations in relation to environmental conditions, can initiate divergence. The balance between gene flow and selection determines the maintenance of such a structure in sympatry. Studying these two antagonistic forces in plant pathogens is made possible because of the high ability of pathogens to disperse and of the strong selective pressures exerted by their hosts. In this article, we analysed the genetic structure of the population of the apple scab fungus, Venturia inaequalis, in a heterogeneous environment composed of various Malus species. Inferences were drawn from microsatellite and AFLP data obtained from 114 strains sampled in a single orchard on nine different Malus species to determine the forces that shape the genetic structure of the pathogen

    Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome

    Get PDF
    A series of 21 multiplex (MP) polymerase chain reactions containing simple sequence repeat (SSR) markers spanning most of the apple genome has been developed. Eighty-eight SSR markers, well distributed over all 17 linkage groups (LGs), have been selected. Eighty-four of them were included in 21 different MPs while four could not be included in any MPs. The 21 MPs were then used to genotype approximately 2,000 DNA samples from the European High-quality Disease-Resistant Apples for a Sustainable agriculture project. Two SSRs (CH01d03 and NZAL08) were discarded at an early stage as they did not produce stable amplifications in the MPs, while the scoring of the multilocus (ML) SSR Hi07d11 and CN44794 was too complex for large-scale genotyping. The testing of the remaining 80 SSRs over a large number of different genotypes allowed: (1) a better estimation of their level of polymorphism; as well as of (2) the size range of the alleles amplified; (3) the identification of additional unmapped loci of some ML SSRs; (4) the development of methods to assign alleles to the different loci of ML SSRs and (5) conditions at which an SSR previously described as ML would amplify alleles of a single locus to be determined. These data resulted in the selection of 75 SSRs out of the 80 that are well suited and recommended for large genotyping project

    An overview of the position and robustness of scab resistance QTLs and major genes by aligning of genetic maps in five apple progenies

    Get PDF
    In the frame of the D.A.R.E. project, five mapping populations have been studied for partial scab resistance against several races of Venturia inaequalis. A main objective was to identify QTLs (quantitative traits loci) with broad spectrum of resistance towards a wide range of strains of the fungus. Genetic markers (mainly SSR and AFLP) were tested on each population and genetic maps were constructed for both parents of each population. Meanwhile, pathological tests with several isolates of different races of V. inaequalis were performed. Four major genomic regions appear to be involved in scab resistance: they are located on linkage groups (LG) LG-1, LG-2, LG-11, and LG-17. Some other linkage groups carry either QTLs or major resistance genes that are isolate specific: a QTL on LG-5, Vd on LG-10, and Vg on LG-12. The QTL region located on LG-17 clearly exhibited the widest spectrum of resistanc
    • …
    corecore