133 research outputs found

    A scalable analytical framework for spatio-temporal analysis of neighborhood change: A sequence analysis approach

    Get PDF
    © Springer Nature Switzerland AG 2020. Spatio-temporal changes reflect the complexity and evolution of demographic and socio-economic processes. Changes in the spatial distribution of population and consumer demand at urban and rural areas are expected to trigger changes in future housing and infrastructure needs. This paper presents a scalable analytical framework for understanding spatio-temporal population change, using a sequence analysis approach. This paper uses gridded cell Census data for Great Britain from 1971 to 2011 with 10-year intervals, creating neighborhood typologies for each Census year. These typologies are then used to analyze transitions of grid cells between different types of neighborhoods and define representative trajectories of neighborhood change. The results reveal seven prevalent trajectories of neighborhood change across Great Britain, identifying neighborhoods which have experienced stable, upward and downward pathways through the national socioeconomic hierarchy over the last four decades

    The Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b

    Get PDF
    We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).Comment: Submitted to A&

    Volcanic Gases:Silent Killers

    Get PDF
    This is the accepted manuscript. The final version is available at http://link.springer.com/chapter/10.1007%2F11157_2015_14.Volcanic gases are insidious and often overlooked hazards. The effects of volcanic gases on life may be direct, such as asphyxiation, respiratory diseases and skin burns; or indirect, e.g. regional famine caused by the cooling that results from the presence of sulfate aerosols injected into the stratosphere during explosive eruptions. Although accounting for fewer fatalities overall than some other forms of volcanic hazards, history has shown that volcanic gases are implicated frequently in small-scale fatal events in diverse volcanic and geothermal regions. In order to mitigate risks due to volcanic gases, we must identify the challenges. The first relates to the difficulty of monitoring and hazard communication: gas concentrations may be elevated over large areas and may change rapidly with time. Developing alert and early warning systems that will be communicated in a timely fashion to the population is logistically difficult. The second challenge focuses on education and understanding risk. An effective response to warnings requires an educated population and a balanced weighing of conflicting cultural beliefs or economic interests with risk. In the case of gas hazards, this may also mean having the correct personal protection equipment, knowing where to go in case of evacuation and being aware of increased risk under certain sets of meteorological conditions. In this chapter we review several classes of gas hazard, the risks associated with them, potential risk mitigation strategies and ways of communicating risk. We discuss carbon dioxide flows and accumulations, including lake overturn events which have accounted for the greatest number of direct fatalities, the hazards arising from the injection of sulfate aerosol into the troposphere and into the stratosphere. A significant hazard facing the UK and northern Europe is a “Laki”-style eruption in Iceland, which will be associated with increased risk of respiratory illness and mortality due to poor air quality when gases and aerosols are dispersed over Europe. We discuss strategies for preparing for a future Laki style event and implications for society

    Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence

    Get PDF
    Volcanic ash layers show that the products of Icelandic volcanism reached Britain and Ireland many times during the Holocene. Historical records suggest that at least one eruption, that of Laki in a.d. 1783, was associated with impacts on vegetation. These results raise the question: did Icelandic volcanism affect the Holocene vegetation history of Britain and Ireland? Several studies have used pollen data to address this issue but no clear consensus has been reached. We re-analyse the palynological data using constrained ordination with various representations of potential volcanic impacts. We find that the palynological evidence for volcanic impacts on vegetation is weak but suggest that this is a case of absence of evidence and is not necessarily evidence of absence of impact. To increase the chances of identifying volcanic impacts, future studies need to maximise temporal resolution, replicate results, and investigate a greater number of tephras in a broader range of locations, including more studies from lake sediments

    Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Get PDF
    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well‐preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.Additional co-authors: D DesMarais, M Schmidt, NA Cabrol, A Haldemann, Kevin W Lewis, AE Wang, D Blaney, B Cohen, A Yen, J Farmer, R Gellert, EA Guinness, KE Herkenhoff, JR Johnson, G Klingelhöfer, A McEwen, JW Rice Jr, M Rice, P deSouza, J Hurowit

    A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

    Get PDF
    BACKGROUND: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. METHODS: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. DISCUSSION: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition

    Surface area, porosity and water adsorption properties of fine volcanic ash particles

    No full text
    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10–2 g. Some volcanic implications of this study are discussed

    Insights on tephra settling velocity from morphological observations.

    No full text
    In this study we present a systematic and detailed morphological characterization of tephra particles from different eruptions (Fontana Lapilli, Masaya, Nicaragua; Keanakāko'i Formation, Kilauea, USA; recent dome explosions of Soufriere Hills volcano, Montserrat) and the calculation of their Terminal Fall Velocity (TFV) as obtained based on different drag prediction models (i.e., [Wilson and Huang, 1979], [Haider and Levenspiel, 1989], [Ganser, 1993] and [Dellino et al., 2005]). In particular, particle sphericity, and, therefore, particle surface area, is essential for the calculation of TFV of irregular-shape particles but is of complex determination. Various attempts have been proposed. According to our results, 2D morphological characterization of volcanic particles is a fast and simple application for a wide range of particle size and provides consistent sphericity and settling-velocity values. 3D scanning also provides a promising tool for lapilli-sized tephra (> 2 cm). In contrast, gas-adsorption-derived surface area is not suitable for the calculation of TFV of volcanic particles mostly because it mainly describes the surface contribution of nanometric pores that are not expected to affect significantly TFV and because bulk-sample analysis is representative of neither individual particles nor of the whole particle population. Settling velocities calculated using values of surface area derived from gas adsorption analyses are up to two orders of magnitude lower than the values obtained through 2D analysis. In addition, our results also show how the influence of particle shape on TFV increases with particle size. In particular, calculated TFV converges at small particle sizes (≥ 3 ϕ) regardless of the model applied, suggesting that the spherical assumption is appropriate for this size fraction (discrepancies with the spherical model are within 10%). Discrepancies with the spherical model increase with particle size up to about 50% and depend on the choice of both the TFV model and the morphological parameterization used. In particular, the drag prediction model of Ganser (1993) is sensitive to the effect of particle morphology on TFV and is well suited for all sizes and Reynolds numbers of typical tephra particles. Finally, our results show how individual size categories (whole- and half-ϕ) are not associated with individual TFV values but with a range of values, which increases with class size. Nonetheless, the half-ϕ system is associated with a smaller standard deviation than the whole-ϕ system, and is therefore more appropriate for the modeling of tephra dispersal. In any case, for dispersal modeling purposes, it is more appropriate to indicate a range of settling velocities for each size class rather than giving an average value
    corecore