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ABSTRACT 

Volcanic ash layers show that the products of Icelandic volcanism reached Britain and Ireland 

many times during the Holocene. Historical records suggest that at least one eruption, that of Laki in AD 

1783, was associated with impacts on vegetation. These results raise the question: did Icelandic 

volcanism affect the Holocene vegetation history of Britain and Ireland? Several studies have used 

pollen data to address this issue but no clear consensus has been reached. We re-analyse the 

palynological data using constrained ordination with various representations of potential volcanic 

impacts. We find that the palynological evidence for volcanic impacts on vegetation is weak but suggest 

that this is a case of absence of evidence and is not necessarily evidence of absence. To increase the 

chances of identifying volcanic impacts, future studies need to maximise temporal resolution, replicate 

results, and investigate a greater number of tephras in a broader range of locations, including more 

studies from lake sediments.  
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INTRODUCTION 

At the end of the 1980s, two important discoveries were made in the Holocene 

palaeoenvironmental record of Britain and Ireland. In the Irish bog-oak tree-ring record, Baillie and 

Munro (1988) found clusters of extremely narrow rings close to the inferred age of the Minoan eruption 

of Santorini (Thera) and interpreted these as evidence for a major and widespread volcanogenic climatic 

deterioration (first suggested by frost-rings in Californian Bristlecone Pines [LaMarche and Hirschboek 

1984]). In northern Scotland, meanwhile, Dugmore (1989) reported the first discovery of Holocene 

Icelandic tephra (volcanic ash) on the British mainland. This finding was swiftly followed by many others 

throughout the British Isles as palaeoecologists realized the potential of cryptotephrochronology as an 

accurate, precise and comparatively inexpensive approach to geochronology (Pilcher and Hall 1992, 

1996; Dugmore et al. 1995a; Hall and Pilcher 2002). At least 14 Holocene cryptotephras have been 

found in Britain and 33 in Ireland (Swindles et al. 2011). At the same time as these discoveries, there was 

increasing scientific curiosity about the environmental impacts of volcanism with the eruptions of 

Mount St. Helens (1980) and Pinatubo (1991), and a more general resurgence in interest in 

catastrophism (Burgess 1989; Marriner et al. 2010). These developments led to an important trend in 

palynological research through the 1990s and 2000s - the attempt to use the pollen archive to identify 

distal volcanic impacts on vegetation (Birks 1994; Buckland et al. 1997). The term tephropalynology has 

been coined for such studies (Edwards 1996; Lowe and Hunt 2001; Edwards et al. 2004).  

Blackford et al. (1992) were the first to investigate the palynological record across a volcanic ash 

layer at high resolution (Table 1). At two peatland sites in Scotland, these authors showed coincidence 

between the ca. 4300 BP eruption of Hekla (Hekla-4: Dugmore et al. 1995b; Pilcher et al. 1995a; Zillén et 

al. 2002) and a widely-reported decline in Pinus pollen. In a subsequent study in northern Ireland, Hall et 

al. (1994b) found no correlation between the Hekla-4 tephra and changes in Pinus pollen, although 

interpretation was complicated by the uncertain local presence of pine at their study sites (Edwards et 

al. 1996; Hall et al. 1996). For a tephra layer in Ireland which may be from Hekla-4, Dwyer and Mitchell 

(1997) suggested possible evidence for volcanic impacts on local, but not regional pollen and non-

palynological palynomorph (NPP) taxa, while Hall (2003a) found no evidence of significant changes 

across other Irish tephras. In Scotland, Charman et al. (1995) noted palynological changes associated 

with some tephras, but not others, and in Ireland Caseldine et al. (1998) suggested variability in 

apparent palaeoenvironmental response between the same tephra in different profiles. Overall, this 

literature does not provide a clear answer to the key questions - did volcanic activity affect the 
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vegetation history of Britain and Ireland during the Holocene? and if so, how? The aim of this paper is to 

review and re-analyse this evidence after 20 years of studies in an attempt to assess the strength of the 

case for volcanic impacts on vegetation and to identify significant practical and methodological issues.  

 

Volcanic impacts on vegetation: what can be expected? 

 There is little doubt that volcanoes can have drastic impacts on vegetation. Adjacent to a 

volcanic source lava, pyroclastic flows and lahars may kill all plant life through a combination of extreme 

heat, manual breakage and burial (Griggs 1918, 1922). In explosive eruptions, plant life may be killed by 

the extreme heat and violent winds of a volcanic blast (Griggs 1919, Eggler 1948). Such volcanic impacts 

and the largely sterile substrates which remain, form the basis of a classic primary succession sequence 

(Eggler 1941, Fridriksson 1975, 1987, Whittaker et al. 1989, 1992, Grishin et al. 1995). While such 

volcano-vegetation relationships seem evident in the tephropalynological records  from  peneproximal 

sites (Erlendsson et al. 2009) and even further afield (Edwards and Craigie 1998), the zone affected by 

such proximal impacts is relatively small - generally kilometres to tens of kilometres for Holocene 

eruptions. A much larger region may be affected by distal impacts through exposure to volcanic ash, 

volcanic gases, aerosols and volcanically-modified precipitation, and additional volcanic impacts on 

climate and weather. Tephra may lead to the abrasion of plant surfaces (Griggs 1922, Bjarnason 1991), 

the inhibition of photosynthesis (Cook et al. 1980, Clarkson and Clarkson 1994) and gas exchange (Eggler 

1948), cooling of leaves (Cook et al. 1980), crushing of plant tissues (Eggler 1948, Wilcox 1959, Cook et 

al. 1980), water-logging (Vucetich and Pullar 1963, Crowley et al. 1994), release of metals (Smith et al. 

1983), changes to predation (Wilcox 1959) and disease vulnerability (Cook et al. 1980), all resulting in 

structural changes in plant community composition (Antos and Zobel 1985, Zobel and Antos 1997). As 

well as tephra, volcanoes may produce large quantities of gases including CO2, SO2, HCl and HF (Wilcox 

1959, Le Guern et al. 1988, Symonds et al. 1988, Delmelle et al. 2002) which can affect vegetation as a 

gas, as dry deposition, acidic precipitation, aerosols and adherents to tephra particles (Rose 1977, 

Oskarsson 1980, Delmelle et al. 2001). Impacts on plants may include lesions and burnt spots extending 

to total defoliation and plant death (Parnell and Burke 1990, Clarkson and Clarkson 1994, Delmelle et al. 

2002). Vegetation may be further affected through volcanic soil acidification (Delmelle et al. 2001, 

2002). The largest volcanic eruptions also have the power to modify climate with stratospheric injection 

of sulphur leading to formation of aerosols which are generally efficient scatterers, but only weak 

absorbers of radiation at solar wavelengths, with consequent tropospheric cooling (McCormick et al. 
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1995). Meteorological and proxy-climate records suggest typical cooling following Holocene eruptions of 

up to 1-2°C for up to five years (Mass and Schneider 1977, Self et al. 1981, Angell and Korshover 1985, 

Sear et al. 1987, Scuderi 1990, Zielinski 2000, Gervais and MacDonald 2001). Plants in marginal locations 

may be affected by this cooling, producing changes in community composition which could (conceivably) 

be represented in the palynological record.  Species growing close to a thermal threshold may be limited 

in flowering, or prevented from producing pollen at all for the period of reduced temperatures.  

Proximally and in the short-term, volcanic eruptions may also lead to increased precipitation and 

frequent lightning strikes.  

The potential for Icelandic volcanism to produce impacts on vegetation in the British Isles is 

illustrated by the AD 1783-4 Laki eruption. Abundant historical evidence records plant damage and 

death consistent with known impacts of volcanic acids and aerosols, particularly in eastern England and 

Scotland, with similar accounts from throughout western Europe (Thorarinsson 1981, Sigurdsson 1982, 

Camuffo and Enzi 1995, Grattan and Charman 1994, Grattan and Gilbertson 1994, Grattan and Pyatt 

1994, Grattan et al. 1998). Given the potential of volcanic eruptions to produce impacts on vegetation, 

the presence of Icelandic tephra from many Holocene eruptions suggests the possibility of volcanic 

impacts on vegetation in Britain and Ireland which could be represented in the palynological record. The 

existing research, however,  is inconclusive, with apparently contradictory evidence and  various authors 

presenting a range of viewpoints.  

 

STATISTICAL ANALYSIS OF PALYNOLOGICAL DATA 

Although the use of quantitative data analysis was advocated in 1994 by Birks, the identification 

of volcanic impacts in pollen diagrams spanning Holocene tephra layers in Britain and Ireland has been 

entirely qualitative, being based on observed changes coincident with tephra layers and judgements as 

to whether any of these exceed natural variability. Here we apply a quantitative approach based on 

constrained ordination. Pollen percentage summary diagrams from published palynological analyses 

across tephra layers were digitised and compiled. Almost all such diagrams are from peatlands.  

A detrended canonical correspondence analysis (DCCA) with depth as the sole explanatory 

variable was used to determine compositional gradient lengths. As these gradients were short (<1 

standard deviation), ordination methods based on a linear species response are most appropriate. 

Redundancy analysis (RDA), the constrained form of principal components analysis (PCA), was used in all 
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subsequent analyses. Pollen data were square-root transformed and double centring of samples and 

variables was applied. In order to account statistically for long-term processes occurring through the full 

duration of the profiles, depth was treated as a co-variable in all analyses as a surrogate for time. 

Stratigraphically-constrained Monte Carlo permutation tests (999 permutations) were used to test the 

significance of the applied models. All ordinations used CANOCO vers. 4.53 (Ter Braak and Šmilauer 1997-

2004).  

Previous studies have taken a variety of approaches to the representation of a volcanic impact 

in an ordination of palaeoecological data. We tested four contrasting models:  

i) The simplest model considers the difference between the pollen assemblages prior to and 

following emplacement of the tephra layer, modelled in CANOCO as a before (0) and after (1) 

dummy variable with the division placed at the peak tephra concentration. This approach 

makes the assumption of a lasting impact with no recovery within the period spanned by 

the profile. This will only be valid where recovery takes longer than the remaining period 

spanned by the profile, or where the impact leads to a permanent vegetation change.  

ii) A more sophisticated method is to model the onset and recovery from a volcanic impact. Lotter 

and Birks (1993) proposed an approach based on an exponential decay curve. The variable 

( ) is assigned a value of 0 below the tephra, a value of 100 at the tephra peak decreasing 

as exp -αt above the tephra where α is the decay coefficient and t is sample time after the 

tephra peak. The model thereby assumes an impact starting coincident with the tephra peak 

and declining rapidly with time. Lotter and Birks (1993) used a value of α =0.5. We varied α 

between 0.1 and 0.7, but this did not change the (non-) significance of the results. Results 

are reported using α=0.5 for comparison with previous studies. Where evidence of impacts 

is found in multiple profiles, varying this coefficient might be a useful approach to examine 

differences in the duration of impact.  

iii) The above model assumes an instantaneous start to a volcanic impact which, while perhaps 

valid for the context in which it was first proposed (diatoms in lacustrine sediments), is 

arguably not appropriate for pollen in peat profiles. The issue is one of taphonomy – Clymo 

and Mackay (1987) and Rowley and Rowley (1956) have experimentally demonstrated 

substantial post-depositional movement of pollen through peat profiles. If a volcanic event 

caused a short-lived increase in pollen deposition of a taxon we would expect some of that 

additional pollen to be transported into the under- and over-lying peat. An alternative 
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volcanic impact model therefore takes account of this taphonomic dimension using an 

exponential decay curve as above but with  declining similarly both above and below the 

tephra peak.   

iv) A final approach contrasts with the above models. Instead of using a conceptual construct, the 

tephra concentration profile is used as explanatory variable. This approach has been used in 

some palaeolimnological studies as volcanic impacts may be directly due to the presence of 

tephra in the lake (Barker et al. 2000). In these records the concentration profile represents 

the post-depositional taphonomy of tephra shards (Payne and Gehrels 2010) and there is no 

probable intrinsic reason for it to be related to the pattern and timing of any volcanic impact 

on vegetation. However, if the taphonomy of tephra shards and pollen grains were 

equivalent (see discussion below) then the tephra concentration profile might be a useful 

indicator of how a short-lived change in pollen deposition would be represented  (Hall and 

Pilcher 2002). 

All these models simulate the pattern of a volcanic impact, but do not make fixed assumptions 

about the mode of impact; they are applicable to both direct and indirect forcing mechanisms. All 

models were tested for all datasets with the exception of tephra concentration profiles which were not 

available for some profiles. Where more than one tephra was present in a sequence, all were 

incorporated in a single analysis. We included the full length of the published profiles, hence spanning 

differing time periods in different records (Table 1). Analyses make no correction for taxonomic 

resolution and are necessarily based only on major pollen types for most profiles.  

 

DISCUSSION OF RESULTS 

Limitations of the evidence 

 Before discussing the results of our analyses, brief consideration is given to the limitations of the 

available evidence. The published diagrams include differing numbers of taxa: while some include a 

large proportion (e.g. 55 taxa in Weir 1995), others are much more selective (e.g. 19 taxa in the Slieve 

Meelbeg site of Hall et al. 1994a). The taxonomic resolution varies with some differentiating taxa 

grouped by other authors (e.g. Gramineae/Cerealia) and studies present different selections of 

‘important’ taxa (in the case of Dwyer & Mitchell [1997] including some NPPs). The digitisation process is 
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likely to introduce both minor systematic offsets and small random errors into the data, particularly with 

rare taxa- abundances marked with a ‘+’ symbol in pollen diagrams have generally been recorded as 

zero. Sampling resolution and profile length also vary between studies and are likely to affect our ability 

to identify any volcanic impacts. Several of the studies we analyse were not primarily focused on the 

identification of any volcanic impacts and pollen diagrams are likely to have been constructed in the 

light of the research questions of primary interest for the study.  

 Despite such acknowledged limitations, we believe that the results are adequate to address the 

fundamental question of whether there is sound palynological evidence for volcanic impacts on 

vegetation history. To consider the issue of whether exclusion of rare taxa affects results, we compared 

more- and less-detailed version of the records for Hekla-4 at Loch Lèir and Sluggan Bog. No changes 

were found in the significance of results. Even summary diagrams which include relatively limited 

numbers of taxa typically encompass the vast majority of all pollen grains. Differences in the published 

studies would render it difficult to assess the spatial extent of any volcanic impacts, but as our primary 

question is whether there is any robust evidence for volcanic impacts such differences are not critical to 

our study.  

Data analysis 

Volcanic impact models explain a significant proportion of variance in four profiles (Table 2): the 

Croaghaun East site of Dwyer and Mitchell (1997), the Portmagee site of Hall (2003b), the Dallican 

Water site of Bennett et al. (1992) and the Altnabreac site of Blackford et al. (1992).  

In the case of Croaghaun East, Dwyer and Mitchell (1997) present separate pollen diagrams for 

regional and local taxa, the latter including some non-pollen palynomorphs such as the testate amoeba 

Amphitrema flavum (Archerella flavum). Analyses were conducted on each of these records separately 

and on a combined record incorporating both ‘regional’ and ‘local’ taxa as defined in the original paper. 

Significant relationships were identified in all three of these datasets using the simplest ‘before/after’ 

model only. The largest proportion of variance was explained in the regional data with differences 

between the assemblages above and below the tephras largely accounted for by much reduced Pinus 

and increased Fraxinus above the twin tephras. In the local record, differences include increased 

Cyperaceae, Narthecium ossifragum, Sphagnum and NPPs type 16 and 28 above the tephras. The 

changes are both pronounced and coincident with the tephras, but there is no return towards prior 

conditions in the subsequent ca. 400 years of the record, and non-significant results are obtained when 



8 
 

using models which assume a recovery. The authors suggest their record might represent volcanic 

impacts but we believe this is unlikely. The profile is of relatively low temporal resolution (c. 70 years 

between samples) and modern ecological studies do not indicate distal volcanic effects lead to such a 

lasting impact, although this is perhaps possible if the temporary impacts allow an invasive succession. 

We suggest that this result may be more likely attributable to some broadly coincident non-volcanic 

environmental change, in this case a longer-term change to wetter climatic conditions. For Portmagee, 

the ‘before/after’ model explained around a third of total variance with moderate significance (p = 

0.03). The changes detected in the ordinations are a reduction in Corylus and an increase in Gramineae 

(Poacaeae) up the core. These changes are both distinct and coincident with the tephra layer, although 

there is no subsequent return to prior conditions and sampling resolution is low.  Other models did not 

produce a significant result.  A human impact is a possible alternative explanation, with Corylus-

dominated woodland being replaced by grassland.   

  For Altnabreac, three models explain significant variance: tephra concentration, simple 

exponential decay and the ‘peaked’ double exponential decay model, of which the latter explains the 

most variance. In this case the significant result is driven by a substantial peak in Sphagnum coincident 

with the tephra peak – if this taxon is removed all analyses for each model lose significance. Other 

notable changes broadly coincident with the tephra include reduced Pinus and an increase in 

Cyperaceae pollen.  

For Dallican Water a moderate proportion of variance is explained with reasonable significance 

(P=0.02) by the ‘before/after’ model.  In this profile there are three distinct tephra peaks, the lowest 

(704 cm) probably representing the early Holocene Saksunarvatn tephra. The upper two peaks (524 and 

504 cm) are found relatively close to each other and may be either two distinct tephra layers or one 

layer with complex distribution. Probably at least one of these tephras is Hekla-4. The early Holocene 

tephra lies close to a zone boundary and coincides with many changes including a decline in Salix and 

first detection of Quercus and Ulmus pollen. The 524 cm tephra coincides with a minor peak in Salix and 

marks the onset of a short-lived phase until the 504 cm tephra including a peak in Cyperaceae. There is 

little distinct change around 504 cm, but above this peak and the zone boundary at 476 cm there is 

much less tree pollen. We suggest that the most likely explanation for the significant result is that the 

‘before/after’ variable captures long-term vegetation changes including the early Holocene 

establishment of trees in an ameliorating climate and mid-Holocene anthropogenic deforestation. We 

see little reason to suspect volcanic impacts on the vegetation.  
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There is no significant relationship in all the other records, including some such as Strath of 

Kildonan-K1 (Charman et al. 1995) and Loch Lèir (Blackford et al. 1992) which have been suggested to 

show pollen changes at the time of tephra deposition. In Strath of Kildonan-K1, the tephra profile is 

rather diffuse, with the most distinct changes (replacement of Coryloid by Cyperaceae pollen) occurring 

below the tephra peak and therefore not identified as being related to tephra deposition in our 

analyses. At Loch Lèir, although there is a rise in Cyperaceae and decline in Pinus broadly coincident with 

the tephra layer, larger changes in these taxa are slightly offset (c. 10 mm) from the tephra peak, 

although tephra mobility in the upper part of a peat profile is a possibility (Payne et al. 2005). We 

suggest that these records do not provide strong evidence for volcanic impacts.  

Pinus decline 

The original discussion of putative volcanic impacts by Blackford et al. (1992), and subsequent 

publications, centred on the possibility of a causal relationship between the decline in Pinus pollen and 

the Hekla-4 eruption. A mid-Holocene Pinus decline has been widely reported from pollen and 

macrofossil studies in Britain and Ireland. Earlier research suggested that this event was widespread 

across Britain, and quite sudden – with Pinus forests replaced by blanket bog around 4000 BP (Bennett 

1984). Increasingly, the weight of evidence suggests diversity in both the age and abruptness of this 

event (e.g. Birks 1975; Bridge et al. 1990; Charman 1994; Pilcher et al. 1995b; Anderson et al. 1998; 

Lageard et al. 1999; Tipping et al. 2008). At Loch Lèir the data of Blackford et al. (1992) show a two-stage 

decline in Pinus with the larger changes above the tephra peak. Only in the Altnabreac profile is the 

Pinus decline almost exactly synchronous with the peak concentration of Hekla-4 tephra and there is a 

clear decline in Pinus percentage in the sample(s) above the tephra peak. If volcanism caused a change 

in Pinus pollen production in Britain and Ireland, it would have impacted upon those individuals, or 

stands of pine, that were already close to a survival threshold. Other trees may have been more robust, 

while still others may have already declined prior to the Hekla-4 event as a response to a longer-term 

trend towards wetter conditions (e.g. as at Garry Bog; Hall et al. 1994b) or a cessation in the existence of 

unusually dry bog surfaces (Gear and Huntley 1991). The possibility of an impact of volcanism on Pinus 

growth in the region of the Altnabreac site cannot be excluded, but evidence for a more regional 

volcanically-induced decline in Pinus is weak.  
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Evidence of absence or absence of evidence? 

Overall this analysis of palynological data provides very limited support for vegetation change 

consistent with a possible volcanic impact coincident with tephra deposition. The most convincing 

evidence is from the Altnabreac site (Blackford et al. 1992) where there is a distinct peak in Sphagnum 

coincident with the tephra layer. Sphagnum might be expected to increase in abundance in response to 

a cooler climate or increased local moisture but to be deleteriously affected by acidity, the physical 

impact of tephra or leached metals (Ferguson et al. 1978, 1980; Gorham et al. 1984; Lee et al. 1987). It 

must be cautioned that this is a change in one taxon at one site and should not be over-interpreted. 

Although the palynological evidence for volcanic impacts overall is weak, absence of evidence is not 

necessarily evidence of absence and these results should not be taken to exclude the possibility of 

volcanic impacts on vegetation.  

Volcanic impacts and critical loads 

In discussions of possible drivers for putative volcanic impacts in the palynological record, 

Grattan and Gilbertson (1994) and Grattan et al. (1999) proposed an approach based on the use of 

critical loads - levels of pollution exposure below which impacts are not known to occur (Nilsson and 

Grennfelt 1988) and currently set at an effective rainfall pH of 4.4 for UK peatland soils (UK National 

Focal Centre 2004). Grattan et al. (1999) used extrapolated tephra concentrations in Ireland to state that 

‘If it is accepted that, at this distance from eruption source, the volume of adsorbed volatiles 

approached the mass of the [Hekla-4] tephra (Oskarsson 1980), then no less than 50 times the annual 

critical load for the Irish sediments may have been deposited in one very brief period of time’, implying 

ecological impacts which might be detectable in the palynological record. This reasoning is problematic. 

Firstly exceedance of a critical load represents the potential for damage to occur but is not a 

quantitative estimate of damage (UK National Focal Centre 2004), and certainly not an indication of 

damage which would be detectable using the relatively insensitive tool of palynology. Critical loads are 

based on studies of impacts of long-term chronic pollution exposure – a quite different case from the 

exposure of an unpolluted ecosystem to a brief pollution episode. The critical load is an equilibrium 

concept and gives no information on the timescales for damage (UK National Focal Centre 2004). 

Although a deposition event ‘fifty times the critical load’ might be associated with ecological impacts, 

the use of critical loads is largely inappropriate in this context.  
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To address the impact of such brief pollution episodes, specific experiments are required. Payne 

and Blackford (2005) tested the deposition scenario proposed by Grattan at al. (1999) for peatlands in 

Ireland and found no detectable changes in peatland plant communities. When this scenario was re-

scaled to match the maximum tephra deposition found in northern Scotland, significant impacts were 

noted. This suggests an important but overlooked point: the scale of tephra deposition in Scotland is 

frequently much greater than that in Ireland and if impacts are in any way related to tephra-loading, 

then it is possible for the impacts in these two areas to be quite distinct. However, there is also an issue 

with the assumption that tephra mass is equal to acid mass as used by Grattan et al. (1999), which 

appears to be based on a misreading of Oskarsson (1980). Oskarsson stated that ‘the mass distribution 

of soluble fluorine … approaches the mass distribution of the tephra at longer distances’, not that the 

mass of fluorine approaches that of tephra. In the most distal sample analysed, leached fluorine mass is 

only 0.1% of tephra mass (Table 4 in Oskarsson 1980). The Oskarsson paper therefore suggests that 

fluorine mass is much less than is assumed by Grattan et al. (1999) and provides no information at all on 

acidity per se. Although Grattan et al. proposed this model as a first approximation, both the scale of 

acid-loading and the use of a critical loads approach to assess the impacts of that loading are 

questionable.  

 

The nature of tephropalynological evidence and recommendations for future research.   

 A tephropalynological approach to the study of past volcanic impacts on vegetation has a 

number of limitations. The most critical of these is the fundamental inability to identify cause-effect 

relationships. Changes in pollen concentration or relative abundance coincident with a tephra layer may 

represent volcanically-induced change, but it is impossible to exclude the possibility of coincident non-

volcanic changes such as human impacts. The case for volcanic causation is strengthened if changes are 

found in multiple profiles and these are consistent with changes observed following recent eruptions. As 

the magnitude and duration of climate change needed to produce palynologically detectable vegetation 

change is considerably greater than the climatic impact of most Holocene eruptions, the palynological 

record is more likely to reveal the direct impact of volcanic products on vegetation than volcanic impacts 

on climate (Grattan and Charman 1994; Grattan et al. 1999). Given that impacts are generally short-

lived, very high resolution will be needed to detect any changes. Typically, this would involve millimetre-

scale sampling, and/or the selection of sites with very high accumulation rates. 
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Linking changes in vegetation to volcanic activity in tephropalynology relies on the comparison 

of pollen and tephra profiles. Both pollen and tephra move vertically through sediments – tephras are 

not simple homogenous layers but rather zones of high tephra concentration with sometimes complex 

three dimensional configurations (Dugmore and Newton 1992; Dugmore et al. 1996; Payne and Gehrels 

2010), while similar processes also act on pollen (Clymo and Mackay 1987; Rowley and Rowley 1956). In 

peatlands, particles with different morphologies and densities may undergo differential taphonomy at 

three stages: i) trapping by different vegetation types; ii) initial post-depositional movement through the 

living vegetation and acrotelm peat; iii) longer-term post-depositional movement as the vegetation and 

acrotelm peat decompose and enter the catotelm. The construction and presentation of tephra profiles 

is essential in tephropalynological studies. Studies in lakes would provide an interesting contrast to the 

current studies largely restricted to peatlands, but would bring a different suite of taphonomic problems 

(e.g. allochthonous sediments, differential sinking and sediment focusing [cf. Thompson et al. 1986; 

Boygle 1999; Edwards and Whittington 2001]).  

 A disproportionate number of the existing studies have concentrated on the Hekla-4 eruption. 

We suggest that a wider range of eruptions should be investigated. It may be the most substantial 

tephra layer in the region, but the Hekla-4 eruption also occurred at the same time as a pre-existing 

period of environmental change, thus making impacts harder to identify (Hall 2003a). A particularly 

useful target would be the 1783 Laki eruption for which there is abundant historical evidence for 

impacts on vegetation: are these represented in the palynological record? The chronology of such 

studies would not be straightforward as Laki tephra has not been found in the British Isles and so the 

tephropalynological approach cannot be applied ; very precise dating by other means would be required 

(early conifer planting might provide useful age markers (cf. Linnard 1971)). The Laki eruption is, 

however, atypical of Holocene Icelandic eruptions and so other events should also be investigated. A 

wider range of sites should also be investigated, particularly in northeast Scotland and the Northern Isles 

as the areas closest to the Icelandic volcanoes and with the most substantial tephra layers (Bennett et 

al. 1992; Dugmore et al. 1995).  
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The 2010 Eyjafjöll eruption has highlighted the susceptibility of modern European life to tephra 

deposition, even though it was not associated with widespread ecological impacts and was relatively 

small (Davies et al. 2010). The Laki historical records and evidence from large eruptions around the 

world suggest that eruptions may be associated with widely dispersed ecological impacts, with 

implications for agriculture, conservation and ecosystem services such as carbon sequestration (Gauci et 

al. 2008). Palynological efforts to identify such impacts in the Holocene remain worthwhile, even if 

previous results have been overwhelmingly negative. Well-designed studies are necessary to address 

these questions.  
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Fig. 1. Tephropalynological study sites in Britain and Ireland included in this study. Site codes: DW- 

Dallican Water, AL- Altnabreac and Loch Lèir, SK- Strath of Kildonan, GA-Garry Bog, FA- Fallahogy, BE- 

Ballyscullion East, SL- Sluggan Bog, SM- Slieve Meelbeg, RB- Redbog, CE- Croaghaun East, CO- Corlea, 

MG- Mongan Bog, MV- Moneyveagh Bog, MN- Monaincha Bog, PM- Portmagee Bog. Iceland is 500 km 

NW of the NW corner of this map.  
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Table 1. Key details of tephropalynological profiles from Britain and Ireland. All dates are historical or 
calibrated radiocarbon years based on the chronology in the original paper. For Bennett et al. (1992) 
new calibration was carried out with CALIB6.0 based on the IntCal09 data (Reimer et al. 2009). Due to 
the limited dating evidence, the estimated duration and temporal resolution of several records should 
be regarded as highly approximate. All interpretation is generally that of the original author(s) except 
where no information is presented. Sampling resolution reflects the combination of the thickness of 
each sampled depth and, where samples are non-contiguous, the gap between samples. WD-EPMA= 
wavelength-dispersive electron probe microanalysis, ED-EPMA= energy-dispersive electron probe 
microanalysis.  

Authors Site/profile Dating 
approach 

Duration of 
record (years; 
to nearest 100) 

Sampling 
resolution 
(mm) 

Approximate 
temporal 
resolution 
(years; to 
nearest 10 ) 

Tephra 
identification 
approach 

Tephra 

Bennett et al. (1992) Dallican Water Radiocarbon ~8500 40-80 ~30 WD-EPMA Probable 
Saksunarvatn 

Hekla-4? 

Uncertain 

Charman et al. (1995)  Strath of Kildonan 
K1 

By reference to 
regional pollen 
record 

400y? 10 ~40? - Uncertain 

Charman et al. (1995)  Strath of Kildonan 
K2 

By reference to 
regional pollen 
record 

400y? 10 ~40? Based on 
inferred age 

Possible 
Hekla-4 

Charman et al. (1995) Strath of Kildonan 
K3 

By reference to 
regional pollen 
record 

400y? 10 ~40? - Uncertain 

Hall (1998) Garry Bog By reference to 
historically 
dated tephras 

~800 10 ~10-20 WD-EPMA 
 

Hekla 1510 
 

Öræfajökull 
1362 

Hall (2003a)  
 

Fallahogy 
 

By reference to 
radiocarbon 
dated tephras 

~500 10 ~10 WD-EPMA Lairg- A 

Lairg-B 

Hall (2003a) 
 

Sluggan Bog Radiocarbon ~1100 10 ~10 - Uncertain 

WD-EPMA Lairg- A 

Lairg-B 

Hall (2003b)b Portmagee Bog By reference to 
radiocarbon 
dated tephra 

~1000 20  ~60 WD-EPMA Hekla 1104 

Hall (2003b)b 
 

Moneyveagh Bog 
 

By reference to 
historically 
dated tephras 

~1000 10 
 

~20 WD-EPMA Hekla 1104 

Öræfajökull 
1362 

Hall (2003b)b,k Monaincha Bog By reference to 
historically 
dated tephras 

~900 10 ~20 WD-EPMA Hekla 1104 

Hall et al. (1994b)  Garry Bog By reference to 
radiocarbon 
dated tephra 

~300 5 ~10 WD-EPMA Hekla-4 

Hall et al. (1994b)  Sluggan Bog Radiocarbon ~300 5 ~10 WD-EPMA Hekla-4 

Blackford et al. (1992)  Altnabreac By reference to 
radiocarbon 
dating in nearby 
core 

~300 1-4 ~5-30 By reference 
to WD-EPMA 
in nearby 
core 

Hekla-4 

Blackford et al. (1992)  Loch Lèir By reference to 
radiocarbon 
dating in nearby 

~200 1-4 ~5-20 By reference 
to WD-EPMA 
in nearby 

Hekla-4 
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core core 

Dwyer and Mitchell 
(1997)  

Croaghaun East Radiocarbon ~1400 50 ~70 WD-EPMA Hekla-4?* 

Caseldine et al. (1998)  Corlea I By reference to 
radiocarbon 
dating in nearby 
cores 

~800 20-80 ~10 By reference 
to ED-EPMA 
in nearby 
core and 
probable 
date 

Hekla-4? 

Caseldine et al. (1998)  Corlea II Single 
radiocarbon 
date and 
analogy to 
other dates 
from nearby 

~1000 20 ~10 ED-EPMA Hekla-4? 

Caseldine et al. (1998)  Corlea V By reference to 
radiocarbon 
dating in nearby 
cores 

~1000 10-40 ~10 By reference 
to ED-EPMA 
in nearby 
core and 
probable 
date 

Hekla-4? 

Hall et al. (1994a)b Slieve Meelbeg By reference to 
radiocarbon 
dated tephra 

100? 10 ~10 WD-EPMA Hekla-4 

Hall et al. (1993) Sluggan Bog Radiocarbon (?) ~700 10 ~20 WD-EPMA c. AD860 
tephra 

c. AD1088 
tephra 

Hall et al. (1993) Fallahogy By reference to 
radiocarbon 
dated tephra (?) 

~600 10-20 ~10-20 Appearance 
and inferred 
age 

c. AD860 
tephra 

c. AD1088 
tephra 

Hall et al. (1993) Ballyscullion East By reference to 
radiocarbon 
dated tephra (?) 

~500 10-20 ~20-40 Appearance 
and inferred 
age 

c. AD860 
tephra 

c. AD1088 
tephra 

Weir (1995) Redbog Radiocarbon ~6500 10-40 ~20-90 - Unknown 

WD-EPMA 
and inferred 
age 

Hekla-4? 

Hall and Mauquoy (2005) Mongan Bog By reference to 
historically-
dated tephras 

~1500 10 ~20 WD-EPMA Hekla 1947 

c. AD1600 
tephra 

Hekla 1104 

*Described as twin tephra layers, but in the absence of a tephra concentration profile and EPMA data for both it is impossible to be sure these 
are not simply two peaks of the same tephra.  
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Table 2. Results of redundancy analysis using four models (i-iv) of volcanic impact as an explanatory 
variable with depth as a co-variable. The percentage variance explained and P-values determined by 
stratigraphically- constrained permutation tests (999 permutations), ns=not significant. No individual 
tests are significant if applying a Bonferroni correction for multiple-comparisons.  

Data  Percent variance explained and P-value 

i)  Before/after ii)  
Exponential 

decay 

iii) 
Peaked 

iv) 
Concentration 

Weir (1995) Redbog II ns ns ns - 

Hall et al. (1993) Fallahogy ns ns ns - 

Hall et al. (1993) Sluggan Bog ns ns ns - 

Hall et al. (1993) Ballyscullion East ns ns ns - 

Hall and Mauquoy (2005) Mongan 
Bog 

ns ns ns - 

Hall (1998) Garry Bog ns ns ns - 

Bennett et al. (1992) Dallican Water 10.7 (P=0.02) ns ns ns 

Blackford et al. (1992) Altnabreac ns 23.3 (P=0.02) 32.0 
(P=0.02) 

19.7 (P=0.02) 

Blackford et al. (1992) Loch Lèir ns ns ns ns 

Caseldine et al. (1998) Corlea I  ns ns ns ns 

Caseldine et al. (1998) Corlea II  ns ns ns ns 

Caseldine et al. (1998) Corlea V  ns ns ns ns 

Charman et al. (1995) K1 ns ns ns ns 

Charman et al. (1995) K2 ns ns ns ns 

Charman et al. (1995) K3 ns ns ns ns 

Dwyer and Mitchell (1997) 
Croaghaun East- Regional 

31.4 (P=0.02) ns ns - 

Dwyer and Mitchell (1997) 
Croaghaun East- Local 

13.2 (P=0.04) ns ns - 

Dwyer and Mitchell (1997) 
Croaghaun East- Combined 

18.9 (P=0.02) ns ns - 

Hall et al. (1994b) Garry Bog ns ns ns - 

Hall et al. (1994b) Sluggan Bog ns ns ns - 

Hall et al. (1994a) Slieve Meelbeg ns ns ns ns 

Hall (2003) Fallahogy ns ns ns - 

Hall (2003) Sluggan Bog ns ns ns - 

Hall (2003b) Portmagee Bog 29.2 (P=0.03) ns ns - 

Hall (2003b) Moneyveagh Bog ns ns ns - 

Hall (2003b) Monaincha Bog ns ns ns - 

 

 


