234 research outputs found
French Meteor Network for High Precision Orbits of Meteoroids
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated
Bilobate comet morphology and internal structure controlled by shear deformation
Bilobate comets—small icy bodies with two distinct lobes—are a common configuration among comets, but the factors shaping these bodies are largely unknown. Cometary nuclei, the solid centres of comets, erode by ice sublimation when they are sufficiently close to the Sun, but the importance of a comet’s internal structure on its erosion is unclear. Here we present three-dimensional analyses of images from the Rosetta mission to illuminate the process that shaped the Jupiter-family bilobate comet 67P/Churyumov–Gerasimenko over billions of years. We show that the comet’s surface and interior exhibit shear-fracture and fault networks, on spatial scales of tens to hundreds of metres. Fractures propagate up to 500 m below the surface through a mechanically homogeneous material. Through fracture network analysis and stress modelling, we show that shear deformation generates fracture networks that control mechanical surface erosion, particularly in the strongly marked neck trough of 67P/Churyumov–Gerasimenko, exposing its interior. We conclude that shear deformation shapes and structures the surface and interior of bilobate comets, particularly in the outer Solar System where water ice sublimation is negligible.Additional co-authors: M. A. Barucci, J.-L. Bertaux, I. Bertini, D. Bodewits, G. Cremonese, V. Da Deppo, S. Debei, M. De Cecco, J. Deller, S. Fornasier, M. Fulle, P. J. Gutiérrez, C. Güttler, W.-H. Ip, H. U. Keller, L. M. Lara, F. La Forgia, M. Lazzarin, A. Lucchetti, J. J. López-Moreno, F. Marzari, M. Massironi, S. Mottola, N. Oklay, M. Pajola, L. Penasa, F. Preusker, H. Rickman, F. Scholten, X. Shi, I. Toth, C. Tubiana & J.-B. Vincen
Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.
The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts
Refined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020
Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity. Aims. Using stellar occultations observed between 2017 and 2020, our aim is to constrain the physical parameters of Chariklo and its rings. We also determine the structure of the rings, and obtain precise astrometrical positions of Chariklo. Methods. We predicted and organised several observational campaigns of stellar occultations by Chariklo. Occultation light curves were measured from the datasets, from which ingress and egress times, and the ring widths and opacity values were obtained. These measurements, combined with results from previous works, allow us to obtain significant constraints on Chariklo's shape and ring structure. Results. We characterise Chariklo's ring system (C1R and C2R), and obtain radii and pole orientations that are consistent with, but more accurate than, results from previous occultations. We confirm the detection of W-shaped structures within C1R and an evident variation in radial width. The observed width ranges between 4.8 and 9.1 km with a mean value of 6.5 km. One dual observation (visible and red) does not reveal any differences in the C1R opacity profiles, indicating a ring particle size larger than a few microns. The C1R ring eccentricity is found to be smaller than 0.022 (3σ), and its width variations may indicate an eccentricity higher than ~0.005. We fit a tri-axial shape to Chariklo's detections over 11 occultations, and determine that Chariklo is consistent with an ellipsoid with semi-axes of 143.8-1.5+1.4, 135.2-2.8+1.4, and 99.1-2.7+5.4 km. Ultimately, we provided seven astrometric positions at a milliarcsecond accuracy level, based on Gaia EDR3, and use it to improve Chariklo's ephemeris.Fil: Morgado, B.E.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Sicardy, Bruno. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Braga Ribas, Felipe. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Universidade Tecnologia Federal do Parana; BrasilFil: Desmars, Josselin. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Gomes Júnior, Altair Ramos. Universidade de Sao Paulo; BrasilFil: Bérard, D.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Leiva, Rodrigo. Universidad de Chile; Chile. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Vieira Martins, Roberto. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Benedetti Rossi, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Universidade Federal de Sao Paulo; BrasilFil: Santos Sanz, Pablo. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Camargo, Julio Ignacio Bueno. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Duffard, R.. Universidade Federal do Rio de Janeiro; BrasilFil: Rommel, F.L.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Assafin, M.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Boufleur, R.C.. Universidad Nacional de Córdoba; ArgentinaFil: Colas, F.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Kretlow, Mike. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Beisker, W.. University of North Carolina; Estados UnidosFil: Sfair, Rafael. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Snodgrass, Colin. University of Edinburgh; Reino UnidoFil: Morales, N.. Pontificia Universidad Católica de Chile; Chile. Universidad Católica de Chile; ChileFil: Fernández Valenzuela, E.. Pontificia Universidad Católica de Chile; Chile. Universidad Católica de Chile; ChileFil: Amaral, L.S.. Massachusetts Institute of Technology; Estados UnidosFil: Amarante, A.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Artola, R.A.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Backes, M.. Universidad Nacional de Córdoba; ArgentinaFil: Bath, K. L.. University of North Carolina; Estados UnidosFil: Bouley, S.. University of St. Andrews; Reino UnidoFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Schneiter, Ernesto Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Económica y Legal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentin
Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process
(704) Interamnia: a transitional object between a dwarf planet and a typical irregular-shaped minor body
Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution.
Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D ≤ 200 km) bodies.
Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state.
Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm−3, which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2σ level.
Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D ≤ 300 km) less massive (m ≤ 3 × 1019 kg) bodies
Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas
is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. lineage. genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates
Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations
CONTEXT: A stellar occultation by Neptune’s main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. AIMS: We aimed at constraining Triton’s atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. METHODS: We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range ~8 km to ~190 km, corresponding to pressure levels from 9 µbar down to a few nanobars. RESULTS: A pressure of 1.18 ± 0.03 µbar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 µbar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude
- …