2,625 research outputs found

    Deuteron photo-disintegration with polarised photons in the energy range 30 - 50 MeV

    Full text link
    The reaction d(\vec\gamma,np) has been studied using the tagged and polarised LADON gamma ray beam at an energy 30 - 50 MeV to investigate the existence of narrow dibaryonic resonances recently suggested from the experimental measurements in a different laboratory. The beam was obtained by Compton back-scattering of laser light on the electrons of the storage ring ADONE. Photo-neutron yields were measured at five neutron angle \vartheta_n = 22, 55.5, 90, 125 and 157 degrees in the center of mass system.Our results do not support the existence of such resonances.Comment: 16 pages, Latex, 22 figures, 1 table. Nucl. Phys. A to appea

    Performance of the ABCN-25 readout chip for the ATLAS Inner Detector Upgrade

    Get PDF
    We present the test results of the ABCN-25 front end chip implemented in CMOS 0.25 μm technology and optimised for the short, 2.5 cm, silicon strips intended to be used in the upgrade of the ATLAS Inner Detector. We have obtained the full functionality of the readout part, the expected performance of the analogue front-end and the operation of the power control circuits. The performance is evaluated in view of the minimization of the power consumption, as the upgrade detector may contain up to 70 million of channels. System tests with different power distribution schemes proposed for the future tracker detectors are possible with this chip. The ABCN-25 ASIC is now serving as the prototype readout chip in the developments of the modules and staves for the upgrade of the ATLAS Inner Detector

    SCTA - A Rad-Hard BiCMOS Analogue Readout ASIC for the ATLAS Semiconductor Tracker

    Get PDF
    Two prototype chips for the analogue readout of silicon strip detectors in the ATLAS Semiconductor Tracker (SCT) have been designed and manufactured, in 32 channels and 128 channel versions, using the radiation hard BiCMOS DMILL process. The SCTA chip comprises three basic blocks: front-end amplifier, analogue pipeline and output multiplexer. The front-end circuit is a fast transresistance amplifier followed by an integrator, providing fast shaping with a peaking time of 25 ns, and an output buffer. The front end output values are sampled at 40 MHz rate and stored in a 112-cell deep analogue pipeline. The delay between the write pointer and trigger pointer is tunable between 2 ms and 2.5 ms. The chip has been tested successfully and subsequently irradiated up to 10 Mrad. Full functionality of all blocks of the chip has been achieved at a clock frequency of 40 MHz both before and after irradiation. Noise figures of ENC = 720 e- + 33 e-/pF before irradiation and 840 e- + 33 e-/pF after irradiation have been obtained

    Inclusive electron scattering in a relativistic Green function approach

    Get PDF
    A relativistic Green function approach to the inclusive quasielastic (e,e') scattering is presented. The single particle Green function is expanded in terms of the eigenfunctions of the nonhermitian optical potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive reactions. Numerical results for the response functions and the cross sections for different target nuclei and in a wide range of kinematics are presented and discussed in comparison with experimental data.Comment: 12 pages, 7 figures, REVTeX

    Expectations for the high-energy neutrino detection from starburst galaxies with KM3NeT/ARCA

    Get PDF
    Star-forming galaxies (SFGs) and starburst galaxies (SBGs) are extragalactic sources which could produce high-energy neutrinos. In principle, they could play a rather important role for explaining at least a sizeable part of IceCube’s observations of astophysical neutrino. Using a recent theoretical model which implemented a blending of spectral indeces, we present the KM3NeT/ARCA sensitivities for such a diffuse flux from the startburst galaxies. In particular, we provide the 5-year differential sensitivity for the two building blocks of ARCA. We make use only of the track-like events in the range of 100 GeV - 10 PeV differentiate in 11 bins of energy. We show how the upcoming neutrino telescope could observe the diffuse SFG and SBG within 5 years of data taking. We found the minimum of the sensitivity at around 100 TeV, which is also the energy where the SBG contribution is expected to peak. This would not only constrain the multi-component fit of the observed astrophysical neutrino flux at that energy (100 TeV), but would also provide us a direct link between the star-forming activity in the reservoir environments and the hadronic emissions.Postprint (published version

    Antisymmetrized Green's function approach to (e,e)(e,e') reactions with a realistic nuclear density

    Get PDF
    A completely antisymmetrized Green's function approach to the inclusive quasielastic (e,e)(e,e') scattering, including a realistic one-body density, is presented. The single particle Green's function is expanded in terms of the eigenfunctions of the nonhermitian optical potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive reactions. Nuclear correlations are included in the one-body density. Numerical results for the response functions of 16^{16}O and 40^{40}Ca are presented and discussed.Comment: 45 pages, 3 figure

    Nuclear Photoabsorption at Photon Energies between 300 and 850 Mev

    Full text link
    We construct the formula for the photonuclear total absorption cross section using the projection method and the unitarity relation. Our treatment is very effective when interference effects in the absorption processes on a nucleon are strong. The disappearance of the peak around the position of the D13D_{13} resonance in the nuclear photoabsorption can be explained with the cooperative effect of the interference in two-pion production processes,the Fermi motion, the collision broadenings of Δ\Delta and NN^*, and the pion distortion in the nuclear medium. The change of the interference effect by the medium plays an important role.Comment: 22pages,7figures,revtex

    Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS

    Full text link
    A scintillating fibre tracker is proposed to measure elastic proton scattering at very small angles in the ATLAS experiment at CERN. The tracker will be located in so-called Roman Pot units at a distance of 240 m on each side of the ATLAS interaction point. An initial validation of the design choices was achieved in a beam test at DESY in a relatively low energy electron beam and using slow off-the-shelf electronics. Here we report on the results from a second beam test experiment carried out at CERN, where new detector prototypes were tested in a high energy hadron beam, using the first version of the custom designed front-end electronics. The results show an adequate tracking performance under conditions which are similar to the situation at the LHC. In addition, the alignment method using so-called overlap detectors was studied and shown to have the expected precision.Comment: 12 pages, 8 figures. Submitted to Journal of Instrumentation (JINST

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    Differential cross section measurement of eta photoproduction on the proton from threshold to 1100 MeV

    Get PDF
    The differential cross section for the reaction p(gamma, eta p) has been measured from threshold to 1100 MeV photon laboratory energy. For the first time, the region of the S11(1535) resonance is fully covered in a photoproduction experiment and allows a precise extraction of its parameters at the photon point. Above 1000 MeV, S-wave dominance vanishes while a P-wave contribution is observed whose nature will have to be clarified. These high precision data together with the already measured beam asymmetry data will provide stringent constraints on the extraction of new couplings of baryon resonances to the eta meson.Comment: 10 pages, 5 figures, submitted to Phys. Letters B. Typos corrected. Some more information on the S11(1535) parameter
    corecore