270 research outputs found

    Comment on "On the TST_S-Anomaly in Betaine Calcium Chloride Dihydrate"

    Full text link
    Recently, Hlinka and Ishibashi [J. Phys. Soc. Jpn. 67, 495 (1998)] discussed the TST_S-anomaly in betaine calcium chloride dihydrate (BCCD) in a Landau-type approach. We comment on the shortcomings of this approach and discuss the TST_S-anomaly in the framework of a microscopical pseudo spin model based on a realistic description of BCCD in terms of symmetry-adapted local modes.Comment: 2 pages, RevTex, submitted to J. Phys. Soc. Jp

    Development of a screening tool enabling identification of infants and toddlers at risk for family abuse and neglect : A feasibility study from three South European countries

    Get PDF
    Background: Child abuse is a health and social problem, and few screening instruments are available for the detection of risk in primary health care. The aim was to develop a screening instrument to be used by professionals in the public health care sector, thus enabling the detection of infants and toddlers at risk of emotional and physical abuse and neglect, and to provide evidence for the feasibility of the instrument in Cyprus, Greece and Spain. Method: A total of 50 health professionals from paediatric public health-care centres in the three countries were involved in a three-step process for guiding the development of the screening tool and its application. Results: A nine-item screening tool, consisting of items assessing relational emotional abuse, physical abuse and other risk factors, was developed. The screening tool was applied on a total of 219 families with 0 to 3-year-old children attending public health centres in the three countries. Clinicians reported that they agreed on the inclusion of the questions (86.4-100%) and that they found the questions to be useful for the clinical evaluation of the family (63.2-100%). Conclusion: The screening tool shows considerable face validity and was reported feasible by an international set of clinician

    DESCRIPCIÓN DE LOS GENOTIPOS DE C. TRACHOMATIS EN EL HOSPITAL DE BASURTO-BILBAO

    Get PDF
    Se describen las características genotípicas de los aislamientos de C. trachomatis en una consulta de infecciones de transmisión sexual (ITS) en Bilbao para valorar la posible introducción de la cepa cwCT, variante aislada en Suecia, en la población diana del hospital de Basurto-Bilbao

    Maternal psychological distress in primary care and association with child behavioural outcomes at age three

    Get PDF
    Observational studies indicate children whose mothers have poor mental health are at increased risk of socio-emotional behavioural difficulties, but it is unknown whether these outcomes vary by the mothers’ mental health recognition and treatment status. To examine this question, we analysed linked longitudinal primary care and research data from 1078 women enrolled in the Born in Bradford cohort. A latent class analysis of treatment status and self-reported distress broadly categorised women as (a) not having a common mental disorder (CMD) that persisted through pregnancy and the first 2 years after delivery (N = 756, 70.1 %), (b) treated for CMD (N = 67, 6.2 %), or (c) untreated (N = 255, 23.7 %). Compared to children of mothers without CMD, 3-year-old children with mothers classified as having untreated CMD had higher standardised factor scores on the Strengths and Difficulties Questionnaire (d = 0.32), as did children with mothers classified as having treated CMD (d = 0.27). Results were only slightly attenuated in adjusted analyses. Children of mothers with CMD may be at risk for socio-emotional and behavioural difficulties. The development of effective treatments for CMD needs to be balanced by greater attempts to identify and treat women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00787-015-0777-2) contains supplementary material, which is available to authorized users

    The SAR11 Group of Alpha-Proteobacteria Is Not Related to the Origin of Mitochondria

    Get PDF
    Although free living, members of the successful SAR11 group of marine alpha-proteobacteria contain a very small and A+T rich genome, two features that are typical of mitochondria and related obligate intracellular parasites such as the Rickettsiales. Previous phylogenetic analyses have suggested that Candidatus Pelagibacter ubique, the first cultured member of this group, is related to the Rickettsiales+mitochondria clade whereas others disagree with this conclusion. In order to determine the evolutionary position of the SAR11 group and its relationship to the origin of mitochondria, we have performed phylogenetic analyses on the concatenation of 24 proteins from 5 mitochondria and 71 proteobacteria. Our results support that SAR11 group is not the sistergroup of the Rickettsiales+mitochondria clade and confirm that the position of this group in the alpha-proteobacterial tree is strongly affected by tree reconstruction artefacts due to compositional bias. As a consequence, genome reduction and bias toward a high A+T content may have evolved independently in the SAR11 species, which points to a different direction in the quest for the closest relatives to mitochondria and Rickettsiales. In addition, our analyses raise doubts about the monophyly of the newly proposed Pelagibacteraceae family

    Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 59 (2010): 518-533, doi:10.1093/sysbio/syq037.An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72 major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable topology emerges without the removal of rapidly evolving genes or taxa, a practice common to phylogenomic analyses. Several major groups are stable and strongly supported in these analyses (e.g. SAR, Rhizaria, Excavata), while the proposed supergroup ‘Chromalveolata’ is rejected. Further, extensive instability among photosynthetic lineages suggests the presence of systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxonrich analyses such as presented here provide a method for testing the accuracy of relationships that receive high bootstrap support in phylogenomic analyses and enable placement of the multitude of lineages that lack genome scale data

    The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates

    Get PDF
    The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA
    • …
    corecore