293 research outputs found

    Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana

    Get PDF
    As Earth is currently experiencing dramatic climate change, it is of critical interest to understand how species will respond to it. The chance of a species withstanding climate change is likely to depend on the diversity within the species and, particularly, whether there are sub-populations that are already adapted to extreme environments. However, most predictive studies ignore that species comprise genetically diverse individuals. We have identified genetic variants in Arabidopsis thaliana that are associated with survival of an extreme drought event—a major consequence of global warming. Subsequently, we determined how these variants are distributed across the native range of the species. Genetic alleles conferring higher drought survival showed signatures of polygenic adaptation and were more frequently found in Mediterranean and Scandinavian regions. Using geo-environmental models, we predicted that Central European, but not Mediterranean, populations might lag behind in adaptation by the end of the twenty-first century. Further analyses showed that a population decline could nevertheless be compensated by natural selection acting efficiently over standing variation or by migration of adapted individuals from populations at the margins of the species’ distribution. These findings highlight the importance of within-species genetic heterogeneity in facilitating an evolutionary response to a changing climate

    Caracterización hidrogeoquímica de los manantiales del área geotermal de Ixtapan de la Sal-Tonatico (México)

    Get PDF
    La composición química del agua subterránea es el resultado de continuos procesos de interacción entre el agua de precipitación, que se infiltra en el terreno, y los minerales presentes en las rocas por donde circula. Parte de las características químicas del agua son adquiridas en la zona no saturada y otras más a lo largo de su recorrido dentro de la zona saturada, hasta donde pueden ser captadas o bien emerger como agua de manantial. Estos últimos según sus características, puede ser empleados para consumo humano, como generadores de energía o bien para fines recreativos, como es el caso de los manantiales termales de Ixtapan de la Sal y Tonatico. Los estudios hidrogeoquímicos de manantiales termales han permitido ampliar el conocimiento del origen, edad, composición físico-química de las aguas, de las condiciones de recarga y posibles mezclas de agua, así como identificar los procesos que tienen lugar en el acuífero y que permiten obtener una visión más completa del comportamiento del acuífero. También permiten deducir las características de la roca, composición mineralógica, textura, porosidad, grado de alteración, fracturación y compactación, tiempo de residencia o de contacto, temperatura y presión..

    Beyond Prejudice as Simple Antipathy: Hostile and Benevolent Sexism Across Cultures

    Get PDF
    The authors argue that complementary hostile and benevolent componen:s of sexism exist ac ro.ss cultures. Male dominance creates hostile sexism (HS). but men's dependence on women fosters benevolent sexism (BS)-subjectively positive attitudes that put women on a pedestal but reinforce their subordination. Research with 15,000 men and women in 19 nations showed that (a) HS and BS are coherenl constructs th at correlate positively across nations, but (b) HS predicts the ascription of negative and BS the ascription of positive traits to women, (c) relative to men, women are more likely to reject HS than BS. especially when overall levels of sexism in a culture are high, and (d) national averages on BS and HS predict gender inequal ity across nations. These results challenge prevailing notions of prejudice as an antipathy in that BS (an affectionate, patronizing ideology) reflects inequality and is a cross-culturally pervasive complement to HS

    Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait

    Get PDF
    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors

    Integrated Analysis of Germline and Tumor DNA Identifies New Candidate Genes Involved in Familial Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) shows aggregation in some families but no alterations in the known hereditary CRC genes. We aimed to identify new candidate genes which are potentially involved in germline predisposition to familial CRC. An integrated analysis of germline and tumor whole-exome sequencing data was performed in 18 unrelated CRC families. Deleterious single nucleotide variants (SNV), short insertions and deletions (indels), copy number variants (CNVs) and loss of heterozygosity (LOH) were assessed as candidates for first germline or second somatic hits. Candidate tumor suppressor genes were selected when alterations were detected in both germline and somatic DNA, fulfilling Knudson's two-hit hypothesis. Somatic mutational profiling and signature analysis were also performed. A series of germline-somatic variant pairs were detected. In all cases, the first hit was presented as a rare SNV/indel, whereas the second hit was either a different SNV (3 genes) or LOH affecting the same gene (141 genes). BRCA2, BLM, ERCC2, RECQL, REV3L and RIF1 were among the most promising candidate genes for germline CRC predisposition. The identification of new candidate genes involved in familial CRC could be achieved by our integrated analysis. Further functional studies and replication in additional cohorts are required to confirm the selected candidates

    Identification of a novel synthetic lethal vulnerability in non-small cell lung cancer by co-targeting TMPRSS4 and DDR1

    Get PDF
    Finding novel targets in non-small cell lung cancer (NSCLC) is highly needed and identification of synthetic lethality between two genes is a new approach to target NSCLC. We previously found that TMPRSS4 promotes NSCLC growth and constitutes a prognostic biomarker. Here, through large-scale analyses across 5 public databases we identified consistent co-expression between TMPRSS4 and DDR1. Similar to TMPRSS4, DDR1 promoter was hypomethylated in NSCLC in 3 independent cohorts and hypomethylation was an independent prognostic factor of disease-free survival. Treatment with 5-azacitidine increased DDR1 levels in cell lines, suggesting an epigenetic regulation. Cells lacking TMPRSS4 were highly sensitive to the cytotoxic effect of the DDR1 inhibitor dasatinib. TMPRSS4/DDR1 double knock-down (KD) cells, but not single KD cells suffered a G0/G1 cell cycle arrest with loss of E2F1 and cyclins A and B, increased p21 levels and a larger number of cells in apoptosis. Moreover, double KD cells were highly sensitized to cisplatin, which caused massive apoptosis (~40%). In vivo studies demonstrated tumor regression in double KD-injected mice. In conclusion, we have identified a novel vulnerability in NSCLC resulting from a synthetic lethal interaction between DDR1 and TMPRSS4

    Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits

    Get PDF
    How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear. In this study, we investigated transcriptional dynamics in different classes of interneurons during the formation of cortical inhibitory circuits in mouse. We found that whether interneurons form synapses on the dendrites, soma, or axon initial segment of pyramidal cells is determined by synaptic molecules that are expressed in a subtype-specific manner. Thus, cell-specific molecular programs that unfold during early postnatal development underlie the connectivity patterns of cortical interneurons

    Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits

    Get PDF
    How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear. In this study, we investigated transcriptional dynamics in different classes of interneurons during the formation of cortical inhibitory circuits in mouse. We found that whether interneurons form synapses on the dendrites, soma, or axon initial segment of pyramidal cells is determined by synaptic molecules that are expressed in a subtype-specific manner. Thus, cell-specific molecular programs that unfold during early postnatal development underlie the connectivity patterns of cortical interneurons
    • …
    corecore