16 research outputs found

    Complete Sequence, Analysis and Organization of the Orgyia leucostigma Nucleopolyhedrovirus Genome

    Get PDF
    The complete genome of the Orgyia leucostigma nucleopolyhedrovirus (OrleNPV) isolated from the whitemarked tussock moth (Orgyia leucostigma, Lymantridae: Lepidoptera) was sequenced, analyzed, and compared to other baculovirus genomes. The size of the OrleNPV genome was 156,179 base pairs (bp) and had a G+C content of 39%. The genome encoded 135 putative open reading frames (ORFs), which occupied 79% of the entire genome sequence. Three inhibitor of apoptosis (ORFs 16, 43 and 63), and five baculovirus repeated ORFs (bro-a through bro-e) were interspersed in the OrleNPV genome. In addition to six direct repeat (drs), a common feature shared among most baculoviruses, OrleNPV genome contained three homologous regions (hrs) that are located in the latter half of the genome. The presence of an F-protein homologue and the results from phylogenetic analyses placed OrleNPV in the genus Alphabaculovirus, group II. Overall, OrleNPV appears to be most closely related to group II alphabaculoviruses Ectropis obliqua (EcobNPV), Apocheima cinerarium (ApciNPV), Euproctis pseudoconspersa (EupsNPV), and Clanis bilineata (ClbiNPV)

    Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot

    Get PDF
    Rationale: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. Objective: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. Methods and Results: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10−8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%–6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%–3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. Conclusions: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative

    Get PDF
    Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative

    Get PDF

    Application of Genomic Sequencing to Refine Patient Stratification for Adjuvant Therapy in Renal Cell Carcinoma

    No full text
    International audiencePurpose: Patients with resected localized clear-cell renal cell carcinoma (ccRCC) remain at variable risk of recurrence. Incorporation of biomarkers may refine risk prediction and inform adjuvant treatment decisions. We explored the role of tumor genomics in this setting, leveraging the largest cohort to date of localized ccRCC tissues subjected to targeted gene sequencing. Experimental Design: The somatic mutation status of 12 genes was determined in 943 ccRCC cases from a multinational cohort of patients, and associations to outcomes were examined in a Discovery (n = 469) and Validation (n = 474) framework. Results: Tumors containing a von-Hippel Lindau (VHL) mutation alone were associated with significantly improved outcomes in comparison with tumors containing a VHL plus additional mutations. Within the Discovery cohort, those with VHL+0, VHL+1, VHL+2, and VHL+≥3 tumors had disease-free survival (DFS) rates of 90.8%, 80.1%, 68.2%, and 50.7% respectively, at 5 years. This trend was replicated in the Validation cohort. Notably, these genomically defined groups were independent of tumor mutational burden. Amongst patients eligible for adjuvant therapy, those with a VHL+0 tumor (29%) had a 5-year DFS rate of 79.3% and could, therefore, potentially be spared further treatment. Conversely, patients with VHL+2 and VHL+≥3 tumors (32%) had equivalent DFS rates of 45.6% and 35.3%, respectively, and should be prioritized for adjuvant therapy. Conclusions: Genomic characterization of ccRCC identified biologically distinct groups of patients with divergent relapse rates. These groups account for the ∼80% of cases with VHL mutations and could be used to personalize adjuvant treatment discussions with patients as well as inform future adjuvant trial design
    corecore