47 research outputs found

    Non-Abelian dynamics and heavy multiquarks, Steiner-tree confinement in hadron spectroscopy

    Full text link
    A brief review is first presented of attempts to predict stable multiquark states within current models of hadron spectroscopy. Then a model combining flip-flop and connected Steiner trees is introduced and shown to lead to stable multiquarks, in particular for some configurations involving several heavy quarks and bearing exotic quantum numbers.Comment: 8 pages, 5 figures, Invited talk at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, August 29th--September 3rd, 2010, to appear in the Proceedings, ed.~A.~Valcarce et al., to appear in Few-Body Syste

    Further Experimental Studies of Two-Body Radiative \Upsilon Decays

    Full text link
    Continuing our studies of radiative Upsilon(1S) decays, we report on a search for Upsilon to gamma eta and Upsilon to gamma f_{J}(2220) in 61.3 pb^{-1} of e^{+}e^{-} data taken with the CLEO II detector at the Cornell Electron Storage Ring. For the gamma eta search the three decays of the eta meson to pi^{+}pi^{-}pi^{0}, pi^{0}pi^{0}pi^{0}, and gamma gamma were investigated. We found no candidate events in the two (3\pi)^{0} modes and no significant excess over expected backgrounds in the gamma gamma mode to set a limit on the branching fraction of B(Upsilon to gamma eta) < 2.1 x 10^{-5} at 90% C.L. The three charged two-body final states h h-bar (h = pi^{+}, K^{+}, p) were investigated for f_{J}(2220) production, with one, one, and two events found, respectively. Limits at 90% C.L. of B(\Upsilon to gamma f_{J}) x B(f_{J} to h h-bar) ~ 1.5 x 10^{-5} have been set for each of these modes. We compare our results to measurements of other radiative Upsilon decays, to measurements of radiative J/psi decays, and to theoretical predictions.Comment: 19 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review

    The gravitational wave detector VIRGO

    Get PDF
    International audienc

    The Virgo data acquisition system

    Get PDF
    International audienc

    Xaraés palisadegrass remains productive after the disappearance of stylo in tropical legume-grass pasture

    Full text link
    Gradual reduction of legumes in mixed tropical pastures requires periodic oversowing. Exploiting the carrying capacity of grass for an extra year after the disappearance of legumes can be economically advantageous to the farmer. This study aimed to evaluate the productivity of Xaraés palisadegrass (Brachiaria brizantha) pastures in response to its historical association with stylo (Stylosanthes guianensis) under two canopy heights to determine whether different grazing management conditions affect the defoliation pattern left by grazing animals. The split-plot experimental design was used, with the historical botanical composition (HBC) (24, 34, 45 and 52 % legume composition) corresponding to the main plots and the canopy frequency of defoliation determined at heights of 30 and 45 cm for Xaraés palisadegrass corresponding to the subplots with two replicates (500 m2) grazed by Tabapuã cows. Pastures with over 34 % stylo in the botanical composition remained productive for one year after legume disappearance, accumulating more than 8 mg ha−1 of forage per year. Xaraés palisadegrass pastures at a height of 30 cm provided better canopy structure, with 64 % less stem production and 43 % less dead material. The 30-cm pre-grazing canopy height provided a grazing environment conducive to forage intake by animals that resulted in efficient use of the pasture. In response to the improved canopy structure, the cows grazed an average of 60 fewer minutes. A HBC greater than 34 % of legumes in the pastures allows for the postponement of legume oversowing until the next growing season

    Observation of inverse Compton emission from a long γ-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    Multiwavelength observations of a TeV-Flare from W comae

    Get PDF
    We report results from an intensive multiwavelength campaign on the intermediate-frequency-peaked BL Lacertae object W Com (z = 0.102) during a strong outburst of very high energy gamma-ray emission in 2008 June. The very high energy gamma-ray signal was detected by VERITAS on 2008 June 7-8 with a flux F(>200 GeV) =(5.7 0.6) × 10-11 cm-2 s -1, about three times brighter than during the discovery of gamma-ray emission from W Com by VERITAS in 2008 March. The initial detection of this flare by VERITAS at energies above 200 GeV was followed by observations in high-energy gamma rays (AGILE; E γ≥ 100 MeV), X-rays (Swift and XMM-Newton), and at UV, and ground-based optical and radio monitoring through the GASP-WEBT consortium and other observatories. Here we describe the multiwavelength data and derive the spectral energy distribution of the source from contemporaneous data taken throughout the flare. © 2009. The American Astronomical Society. All rights reserved
    corecore