61 research outputs found
Aprendizaje cooperativo y motivación de logro en escolares del VI ciclo de una institución educativa, Ica - 2023
El objetivo de la investigación fue determinar la relación entre el aprendizaje
cooperativo y motivación de logro en escolares del VI ciclo en una institución
educativa, Ica, 2023. De modo que, el estudio se justificó en la descripción de la
realidad problemática de las variables. La metodología de estudio fue de tipo
básico, hipotético inductivo, no experimental, enfoque cuantitativo, descriptivo
correlacional; la muestra estuvo conformada por 70 escolares; por consiguiente, se
empleó la técnica de la encuesta y el cuestionario como instrumento para ambas
variables; con una evaluación de la consistencia interna de los datos mediante el
estadístico Alfa de Cronbach, obteniendo una confiabilidad de 0.85 y 0.89. Los
resultados arrojaron una correlación significativa entre el aprendizaje cooperativo y
motivación de logro, por lo que, el p valor es menor que de 0.001 y el coeficiente
Rho de Spearman se ubicó en 0,397, con un nivel alto de 80% (aprendizaje
cooperativo) y 68.6% (motivación logro). En conclusión, el aprendizaje cooperativo
se relacionó significativamente con la motivación de logro como estrategia de
aprendizaje a favor del escolar
Transitar a la intemperie: jóvenes en busca de integración
Depto. de Sociología AplicadaFac. de Ciencias Políticas y SociologíaTRUEpu
Clinical, microbiological, and molecular characterization of pediatric invasive infections by Streptococcus pyogenes in Spain in a context of global outbreak
Streptococcus pyogenes; Invasive disease; OutbreakStreptococcus pyogenes; Enfermedad invasiva; BroteStreptococcus pyogenes; Malaltia invasiva; BrotIn December 2022, an alert was published in the UK and other European countries reporting an unusual increase in the incidence of Streptococcus pyogenes infections. Our aim was to describe the clinical, microbiological, and molecular characteristics of group A Streptococcus invasive infections (iGAS) in children prospectively recruited in Spain (September 2022–March 2023), and compare invasive strains with strains causing mild infections. One hundred thirty isolates of S. pyogenes causing infection (102 iGAS and 28 mild infections) were included in the microbiological study: emm typing, antimicrobial susceptibility testing, and sequencing for core genome multilocus sequence typing (cgMLST), resistome, and virulome analysis. Clinical data were available from 93 cases and 21 controls. Pneumonia was the most frequent clinical syndrome (41/93; 44.1%), followed by deep tissue abscesses (23/93; 24.7%), and osteoarticular infections (11/93; 11.8%). Forty-six of 93 cases (49.5%) required admission to the pediatric intensive care unit. iGAS isolates mainly belonged to emm1 and emm12; emm12 predominated in 2022 but was surpassed by emm1 in 2023. Spread of M1UK sublineage (28/64 M1 isolates) was communicated for the first time in Spain, but it did not replace the still predominant sublineage M1global (36/64). Furthermore, a difference in emm types compared with the mild cases was observed with predominance of emm1, but also important representativeness of emm12 and emm89 isolates. Pneumonia, the most frequent and severe iGAS diagnosed, was associated with the speA gene, while the ssa superantigen was associated with milder cases. iGAS isolates were mainly susceptible to antimicrobials. cgMLST showed five major clusters: ST28-ST1357/emm1, ST36-ST425/emm12, ST242/emm12.37, ST39/emm4, and ST101-ST1295/emm89 isolates.
IMPORTANCE
Group A Streptococcus (GAS) is a common bacterial pathogen in the pediatric population. In the last months of 2022, an unusual increase in GAS infections was detected in various countries. Certain strains were overrepresented, although the cause of this raise is not clear. In Spain, a significant increase in mild and severe cases was also observed; this study evaluates the clinical characteristics and the strains involved in both scenarios. Our study showed that the increase in incidence did not correlate with an increase in resistance or with an emm types shift. However, there seemed to be a rise in severity, partly related to a greater rate of pneumonia cases. These findings suggest a general increase in iGAS that highlights the need for surveillance. The introduction of whole genome sequencing in the diagnosis and surveillance of iGAS may improve the understanding of antibiotic resistance, virulence, and clones, facilitating its control and personalized treatment.This research was supported by CIBER—Consorcio Centro de Investigación Biomédica en Red—(CB 2021), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – NextGenerationEU; Strategic action of the CIBER of Infectious Diseases (CIBERINFEC) 2022
GIARDIASIS AND CRYPTOSPORIDIOSIS IN DOGS OF THE WESTERN AREA OF METROPOLITAN LIMA
El objetivo del estudio fue determinar la prevalencia de Giardia spp y Cryptosporidium spp en caninos criados en los distritos del Cono Oeste de Lima Metropolitana, así como su asociación con las variables sexo, edad, estado físico de las heces, tipo de alimentación y permanencia en el hogar. Se recolectaron 300 muestras fecales de perros aparentemente sanos, de ambos sexos, diversas razas y con edades entre 1 mes a 12 años. Se utilizaron la técnicas de sedimentación espontánea para el diagnóstico de Giardia spp y la tinción de Ziehl-Neelsen modificado para Cryptosporidium spp. Se encontró una prevalencia de 16.7 ± 4.0 y 29.7 ± 5.0% para Giardia spp y Cryptosporidium spp, respectivamente. La prevalencia de Giardia spp fue mayor en animales menores de 6 meses (p<0.05), mientras que animales mayores de 6 años mostraron frecuencias altas de Cryptosporidium spp (p<0.05). Así mismo, formas parasitarias de Giardia spp fueron detectadas con mayor frecuencia en heces sueltas que en heces normales (p<0.05). No se hallaron diferencias significativas entre la presencia de estos protozoos por efecto de las variables sexo, tipo de alimentación y permanencia en el hogar de los canes. Los resultados demuestran la existencia de una prevalencia moderada de Giardia spp y Cryptosporidium spp en la población canina de una importante zona urbana de Lima y su presencia en caninos podría constituir un serio problema para la Salud Pública, en especial a niños y personas inmunosuprimidas.The aim of this study was to determine the prevalence of Giardia spp and Cryptosporidium spp in dogs reared in the western districts of Metropolitan Lima and the association with sex, type of diet, stools physical aspect and staying at home. For this, 300 fecal samples were collected from apparently healthy dogs of both sexes and various breeds between 1 month and 12 years of age. The spontaneous sedimentation technique was used for the diagnostics of Giardia spp and the Ziehl-Neelsen modified was used for Cryptosporidium spp. The prevalence was 16.7 ± 4 and 29.7 ± 5.0% for Giardia spp and Cryptosporidium spp respectively. Younger animals showed higher prevalence of Giardia spp (p<0.05) whereas dogs older than 6 years showed higher prevalence of Cryptosporidium spp (p<0.05). Also, Giardia spp was most commonly found in watery stools than in normal feces (p<0.05). None significant differences due to the presence of these protozoa were found in relation to sex, type of diet and staying at home. The results showed the presence of moderate prevalence of Giardia spp and Cryptosporidium spp in canine population of a major urban area of Lima. These dogs could be a serious problem for public health, especially children and immunosuppressed people
Effectiveness and Safety of Direct‐Acting Antivirals in Hepatitis C Infected Patients With Mental Disorders: Results in Real Clinical Practice
[Abstract]
The aim of this study is to analyze the effectiveness and safety of direct‐acting antivirals (DAAs) in psychiatric patients with chronic hepatitis C (CHC). Secondary objectives included adherence and drug‐drug interaction (DDIs) evaluations. Prospective observational comparative study carried out during 3 years. Psychiatric patients were included and mental illness classified by a psychiatric team based on clinical records. Main effectiveness and safety variables were sustained virologic response (SVR) at posttreatment week 12 (SVR12) and rate of on‐treatment serious drug‐related adverse events (AEs), respectively. A total of 242 psychiatric and 900 nonpsychiatric patients were included. SVR12 by intention‐to‐treat (ITT) analysis of psychiatric vs nonpsychiatric patients was 92.6% (95% confidence interval [CI], 89.1‐96.1) vs 96.2% (95% CI, 94.9‐97.5) (P = .02). SVR12 by modified‐ITT analysis was 97.8% (95% CI, 95.0‐99.3) vs 98.4% (95% CI, 97.5‐99.3) (P = .74). 92.2% of psychiatric patients with mental disorders secondary to multiple drug use (MDSDU) and 93.0% of psychiatric patients without MDSDU vs 96.2% of nonpsychiatric patients reached SVR12 (P = .05 and P = .20, respectively). The percentage of adherent patients to DAAs did not show differences between cohorts (P = .08). 30.2% of psychiatric patients and 27.6% of nonpsychiatric patients presented clinically relevant DDIs (P = .47). 1.7% vs 0.8% of psychiatric vs nonpsychiatric patients developed serious AEs (P = .39); no serious psychiatric AEs were present. DAAs have shown a slightly lower effectiveness in psychiatric patients with CHC, as a result of loss of follow up, which justifies the need for integrated and multidisciplinary health care teams. DAAs safety, adherence, and DDIs, however, are similar to that of nonpsychiatric patients
The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression
Background and Aims: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. Approach and Results: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4-deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. Conclusions: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progressionAgència de Gestió d’Ajuts Universitaris i de Recerca, Grant/Award Number: 2017SGR1015; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Grant/Award Number: CB17/04/00017 and CB06/04/0017; Centro de Investigación Biomédica en Red de Enfermedades Raras, Grant/Award Number: CB06/07/0017; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Grant/Award Number: CB07/08/0017; Ministerio de Ciencia e Innovación, Spain: FPI fellowships: BES-2016-077564, PRE2019-089144, Grant/Award Number: PID2019-106209RB-I00, PID2019-108674RB-100, SAF2015-64149-R, RTI2018-094079-B-100, PID2021-122551OB-I00 and RED2018-102576-T; Science Foundation Ireland, Grant/Award Number: 16/IA/450
Dr. App
El presente proyecto trata sobre un aplicativo móvil llamado “Dr. App” para promocionar los servicios médicos de distintos doctores con distintas especializaciones, ya que actualmente atravesamos una pandemia donde a los usuarios o pacientes nos es difícil poder acceder, en un primer descarte, a un centro médico. Así mismo, este aplicativo contará con una asistente virtual quien organizará sus citas programadas con sus centros de atención; es decir, el paciente podrá acceder a la información sobre las distintas instituciones donde esté doctor atiende. El paciente tendrá distintas opciones de médicos y lugares donde se pueda atender, gracias a la geolocalización, podrá ver una lista de distintos centros médicos y también podrá elegir al doctor mediante un sistema de calificaciones.
Todos los doctores que harán el triaje para destinarlo con una especialidad son médicos recién colegiados; por otro lado, en la plataforma podrán verificar sus documentos y códigos de estos ante cualquier consulta. El aplicativo móvil tendrá una sección donde los pacientes podrán ver la trayectoria de los doctores especializados, es decir, donde han trabajado, especializaciones y otros. This project deals with a mobile application called “Dr. App” to promote the medical services of doctors with different specializations, since we are currently going through a pandemic where users or patients find it difficult to access a medical center in the first instance. Likewise, this application will have a virtual assistant who will organize your scheduled appointments with your care centers; that is, the patient will be able to access information about the different institutions where the doctor attends. The patient will have different options of doctors and places where he can attend, thanks to geolocation, he will be able to see a list of different medical centers and he will also be able to choose the doctor through a rating system.
All the doctors who will do the triage to assign it to a specialty are recently registered doctors; on the other hand, on the platform they will be able to verify their documents and their codes before any query. The mobile application will have a section where patients can see the trajectory of specialized doctors, that is, where they have worked, specializations and others.Trabajo de investigació
Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment
Previous studies based on graph theory parameters applied to diffusion tensor imaging support an alteration of the global properties of structural connectivity network in schizophrenia. However, the specificity of this alteration and its possible relation with chronicity and treatment have received small attention. We have assessed small-world (SW) and connectivity strength indexes of the structural network built using fractional anisotropy values of the white matter tracts connecting 84 cortical and subcortical regions in 25 chronic and 18 first episode (FE) schizophrenia and 24 bipolar patients and 28 healthy controls. Chronic schizophrenia and bipolar patients showed significantly smaller SW and connectivity strength indexes in comparison with controls and FE patients. SW reduction was driven by increased averaged path-length (PL) values. Illness duration but not treatment doses were negatively associated with connectivity strength, SW and PL in patients. Bipolar patients exposed to antipsychotics did not differ in SW or connectivity strength from bipolar patients without such an exposure. Executive functions and social cognition were related to SW index in the schizophrenia group. Our results support a role for chronicity but not treatment in structural network alterations in major psychoses, which may not differ between schizophrenia and bipolar disorder, and may hamper cognition
Paraguay’s approach to biotechnology governance: a comprehensive guide
This study analyzes Paraguay’s biotechnology regulatory framework and its alignment with international standards amid biotechnological advancements. It also identifies areas of improvement for enhancing framework effectiveness. Through this work, we aim to provide a resource for policymakers, stakeholders, and researchers navigating Paraguay’s biotechnology regulation
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-α algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low.The authors would like to thank Universidad Autonoma de Manizales for financial support in the present work (Research project 328-038). This work has also been supported by the Spanish Ministry of Science and Innovation, research project TEC2009-14222.Rodríguez-Sotelo, JL.; Osorio-Forero, A.; Jiménez-Rodríguez, A.; Cuesta Frau, D.; Cirugeda Roldán, EM.; Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy. 16(12):6573-6589. https://doi.org/10.3390/e16126573S657365891612Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep State Switching. Neuron, 68(6), 1023-1042. doi:10.1016/j.neuron.2010.11.032RAUCHS, G., DESGRANGES, B., FORET, J., & EUSTACHE, F. (2005). The relationships between memory systems and sleep stages. Journal of Sleep Research, 14(2), 123-140. doi:10.1111/j.1365-2869.2005.00450.xLandmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K., … Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541. doi:10.1016/j.smrv.2014.03.005Hublin, C., Partinen, M., Koskenvuo, M., & Kaprio, J. (2007). Sleep and Mortality: A Population-Based 22-Year Follow-Up Study. Sleep, 30(10), 1245-1253. doi:10.1093/sleep/30.10.1245The role of polysomnography in the differential diagnosis of chronic insomnia. (1988). American Journal of Psychiatry, 145(3), 346-349. doi:10.1176/ajp.145.3.346Steriade, M., McCormick, D., & Sejnowski, T. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679-685. doi:10.1126/science.8235588DANKER-HOPFE, H., ANDERER, P., ZEITLHOFER, J., BOECK, M., DORN, H., GRUBER, G., … DORFFNER, G. (2009). Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. Journal of Sleep Research, 18(1), 74-84. doi:10.1111/j.1365-2869.2008.00700.xDanker-Hopfe, H., Kunz, D., Gruber, G., Klösch, G., Lorenzo, J. L., Himanen, S. L., … Dorffner, G. (2004). Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. Journal of Sleep Research, 13(1), 63-69. doi:10.1046/j.1365-2869.2003.00375.xVuckovic, A., Radivojevic, V., Chen, A. C. N., & Popovic, D. (2002). Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Medical Engineering & Physics, 24(5), 349-360. doi:10.1016/s1350-4533(02)00030-9Robert, C., Guilpin, C., & Limoge, A. (1998). Review of neural network applications in sleep research. Journal of Neuroscience Methods, 79(2), 187-193. doi:10.1016/s0165-0270(97)00178-7Ronzhina, M., Janoušek, O., Kolářová, J., Nováková, M., Honzík, P., & Provazník, I. (2012). Sleep scoring using artificial neural networks. Sleep Medicine Reviews, 16(3), 251-263. doi:10.1016/j.smrv.2011.06.003Subasi, A., & Erçelebi, E. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, 78(2), 87-99. doi:10.1016/j.cmpb.2004.10.009Rodríguez-Sotelo, J. L., Peluffo-Ordoñez, D., Cuesta-Frau, D., & Castellanos-Domínguez, G. (2012). Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Computer Methods and Programs in Biomedicine, 108(1), 250-261. doi:10.1016/j.cmpb.2012.04.007Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A. C., & Oberye, J. J. L. (2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering, 47(9), 1185-1194. doi:10.1109/10.867928Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215Van Sweden, B., Kemp, B., Kamphuisen, H. A. C., & Van der Velde, E. A. (1990). Alternative Electrode Placement in (Automatic) Sleep Scoring (F pz-Cz/P z-Oz versus C4-At ). Sleep, 13(3), 279-283. doi:10.1093/sleep/13.3.279Mourtazaev, M. S., Kemp, B., Zwinderman, A. H., & Kamphuisen, H. A. C. (1995). Age and Gender Affect Different Characteristics of Slow Waves in the Sleep EEG. Sleep, 18(7), 557-564. doi:10.1093/sleep/18.7.557Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1), 10-19. doi:10.1016/j.cmpb.2011.11.005Shoupeng, S., & Peiwen, Q. (2007). A fractal-dimension-based signal-processing technique and its use for nondestructive testing. Russian Journal of Nondestructive Testing, 43(4), 270-280. doi:10.1134/s1061830907040080Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141Fell, J., Röschke, J., Mann, K., & Schäffner, C. (1996). Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalography and Clinical Neurophysiology, 98(5), 401-410. doi:10.1016/0013-4694(96)95636-9Pincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110-117. doi:10.1063/1.166092Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906Hansen, P., & Mladenović, N. (2001). J-Means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34(2), 405-413. doi:10.1016/s0031-3203(99)00216-2Güneş, S., Polat, K., & Yosunkaya, Ş. (2010). Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications, 37(12), 7922-7928. doi:10.1016/j.eswa.2010.04.043Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine, 42(12), 1186-1195. doi:10.1016/j.compbiomed.2012.09.012Sleep stage classification using Wavelet Transform and neural networkhttp://www.researchgate.net/publication/216570220_Sleep_Stage_Classification_Using_Wavelet_Transform__Neural_NetworkKrakovská, A., & Mezeiová, K. (2011). Automatic sleep scoring: A search for an optimal combination of measures. Artificial Intelligence in Medicine, 53(1), 25-33. doi:10.1016/j.artmed.2011.06.004SHAMBROOM, J. R., FÁBREGAS, S. E., & JOHNSTONE, J. (2011). Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21(2), 221-230. doi:10.1111/j.1365-2869.2011.00944.xSwarnkar, V., & Abeyratne, U. R. (2014). Bispectral analysis of single channel EEG to estimate macro-sleep-architecture. International Journal of Medical Engineering and Informatics, 6(1), 43. doi:10.1504/ijmei.2014.058531Liang, S.-F., Kuo, C.-E., Hu, Y.-H., Pan, Y.-H., & Wang, Y.-H. (2012). Automatic Stage Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and Autoregressive Models. IEEE Transactions on Instrumentation and Measurement, 61(6), 1649-1657. doi:10.1109/tim.2012.2187242Weiss, B., Clemens, Z., Bódizs, R., & Halász, P. (2011). Comparison of fractal and power spectral EEG features: Effects of topography and sleep stages. Brain Research Bulletin, 84(6), 359-375. doi:10.1016/j.brainresbull.2010.12.005Šušmáková, K., & Krakovská, A. (2008). Discrimination ability of individual measures used in sleep stages classification. Artificial Intelligence in Medicine, 44(3), 261-277. doi:10.1016/j.artmed.2008.07.005Olbrich, E., Achermann, P., & Wennekers, T. (2011). The sleeping brain as a complex system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1952), 3697-3707. doi:10.1098/rsta.2011.0199Buckelmüller, J., Landolt, H.-P., Stassen, H. H., & Achermann, P. (2006). Trait-like individual differences in the human sleep electroencephalogram. Neuroscience, 138(1), 351-356. doi:10.1016/j.neuroscience.2005.11.005Van Dongen, H. P. A., Vitellaro, K. M., & Dinges, D. F. (2005). Individual Differences in Adult Human Sleep and Wakefulness: Leitmotif for a Research Agenda. Sleep, 28(4), 479-498. doi:10.1093/sleep/28.4.479A digital telemetry system for ambulatory sleep recordinghttp://physionet.mit.edu/pn4/sleep-edfx/Papers/1993-Kemp—telemetry.pdfDijk, D. J., Beersma, D. G. M., Daan, S., & van den Hoofdakker, R. H. (1989). Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleepsstages and EEG power spectra. European Journal of Pharmacology, 171(2-3), 207-218. doi:10.1016/0014-2999(89)90109-xZhang, Z., Chen, Z., Zhou, Y., Du, S., Zhang, Y., Mei, T., & Tian, X. (2014). Construction of rules for seizure prediction based on approximate entropy. Clinical Neurophysiology, 125(10), 1959-1966. doi:10.1016/j.clinph.2014.02.017Khan, J., Mariappan, R., & Venkatraghavan, L. (2014). Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure. Journal of Anaesthesiology Clinical Pharmacology, 30(3), 409. doi:10.4103/0970-9185.13728
- …