1,032 research outputs found

    Serological surveillance reveals patterns of exposure to H5 and H7 influenza A viruses in European poultry

    Get PDF
    Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically, and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk‐based sampling approach in recent years; however quantitative measures of relative risk associated with risk factors utilised in this approach are necessary for optimisation. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the “other” poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying‐hen holdings. Amongst laying‐hen holdings, free‐range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected ‘hotspots’ for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free‐range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk‐based surveillance strategies, and prioritising management strategies in influenza A outbreaks

    Comparative assessment of the sensitivity of fish early-life stage, daphnia and algae to the chronic ecotoxicity of xenobiotics - perspectives for alternatives to animal testing

    Get PDF
    No-observed-effect concentrations (NOECs) are used in environmental hazard classification and labeling of chemicals and their environmental risk assessment. They are typically obtained using standard tests such as the fish early-life stage (FELS) toxicity test, the chronic Daphnia reproduction test, and the algae growth inhibition test. Given the demand to replace and reduce animal tests, we explored the impact of the FELS toxicity test on the determination of effect concentrations by comparing the FELS toxicity test and the Daphnia and algae acute or chronic toxicity tests. Lowest-observed-effect concentrations (LOECs) were used instead of NOECs for better comparison with median lethal or effect concentration data. A database of FELS toxicity data for 223 compounds was established. Corresponding Daphnia and algae toxicity tests were identified using established databases (US Environmental Protection Agency ECOTOX, Organisation for Economic Co-operation and Development QSAR Toolbox, eChemPortal, EnviroTox, and OpenFoodTox). Approximately 9.5% of the investigated compounds showed a 10-fold higher sensitivity with the FELS toxicity test in comparison with the lowest effect concentrations obtained with any of the other tests. Some of these compounds have been known or considered as endocrine disrupting, or are other non-narcotic chemicals, indicating that the higher sensitivity in the FELS toxicity test is related to a specific mechanism of action. Targeting these mechanisms by alternative test systems or endpoints, using fish embryos for instance, may allow reduction or replacement of the FELS toxicity test or may allow us to prioritize compounds for conduction of the FELS toxicity test

    Banking failure prediction: a boosting classification tree approach

    Get PDF
    The recent financial crisis shows that failure of some financial institutions can cause other banks to fail and ultimately cause damage to the financial system worldwide. Eurozone banks that experienced either liquidity or solvency problems during the finan- cial markets turmoil were bailed out by their national governments with the financial support and supervision of the European Union. This paper applies the boosted classification tree methodology to predict failure in the banking sector and identifies four key scor- ecard variables that are worth tracking closely in order to anticipate and prevent bank financial distress. The data used in this study comprises 2006-2012 annual series of 25 financial ratios of 155 banks in the Eurozone. The findings indicate that the greater the size and the higher the income from non-operating items and net loans to deposits, the more likely is bank failure; conversely, the higher the Interbank ratio the lower the chances of bank financial distress. For the sake of their own financial soundness, banks should fund lending activities through clients' deposits and should avoid relying excessively on non-recurring sources of income

    Livestock trade networks for guiding animal health surveillance

    Get PDF
    BACKGROUND: Trade in live animals can contribute to the introduction of exotic diseases, the maintenance and spread endemic diseases. Annually millions of animals are moved across Europe for the purposes of breeding, fattening and slaughter. Data on the number of animals moved were obtained from the Directorate General Sanco (DG Sanco) for 2011. These were converted to livestock units to enable direct comparison across species and their movements were mapped, used to calculate the indegrees and outdegrees of 27 European countries and the density and transitivity of movements within Europe. This provided the opportunity to discuss surveillance of European livestock movement taking into account stopping points en-route. RESULTS: High density and transitivity of movement for registered equines, breeding and fattening cattle, breeding poultry and pigs for breeding, fattening and slaughter indicates that hazards have the potential to spread quickly within these populations. This is of concern to highly connected countries particularly those where imported animals constitute a large proportion of their national livestock populations, and have a high indegree. The transport of poultry (older than 72 hours) and unweaned animals would require more rest breaks than the movement of weaned animals, which may provide more opportunities for disease transmission. Transitivity is greatest for animals transported for breeding purposes with cattle, pigs and poultry having values of over 50%. CONCLUSIONS: This paper demonstrated that some species (pigs and poultry) are traded much more frequently and at a larger scale than species such as goats. Some countries are more vulnerable than others due to importing animals from many countries, having imported animals requiring rest-breaks and importing large proportions of their national herd or flock. Such knowledge about the vulnerability of different livestock systems related to trade movements can be used to inform the design of animal health surveillance systems to facilitate the trade in animals between European member states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0354-4) contains supplementary material, which is available to authorized users

    The significance of hazardous chemicals in wastewater treatment works effluents

    Get PDF
    This is the post-print version of the final paper published in Science of The Total Environment. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.The advent of increasingly stringent and wider ranging European Union legislation relating to water and the environment has required regulators to assess compliance risk and to respond by formulating appropriate pollution control measures. To support this process the UK Water Industry has completed a national Chemicals Investigation Programme (CIP), to monitor over 160 wastewater treatment works (WwTWs) for 70 determinands. Final effluent concentrations of zinc, polynuclear aromatic hydrocarbons (fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene), “penta” congeners (BDEs) 47 and 99, tributyltin, triclosan, erythromycin, oxytetracycline, ibuprofen, propranolol, fluoxetine, diclofenac, 17β-estradiol and 17α-ethinyl estradiol exceeded existing or proposed Environmental Quality Standards (EQSs) in over 50% of WwTWs. Dilution by receiving water might ensure compliance with EQSs for these chemicals, apart from the BDEs. However, in some cases there will be insufficient dilution to ensure compliance and additional management options may be required

    The sensitivity of seabird populations to density-dependence, environmental stochasticity and anthropogenic mortality

    Get PDF
    The balance between economic growth and wildlife conservation is a priority for many governments. Enhancing realism in assessment of population‐level impacts of anthropogenic mortality can help achieve this balance. Population Viability Analysis (PVA) is commonly applied to investigate population vulnerability, but outcomes of PVA are sensitive to formulations of density‐dependence, environmental stochasticity and life history. Current practice in marine assessments is to use precautionary models that assume no compensation from density‐dependence or rescue‐effects via “re‐seeding” from other colonies. However, if we could empirically quantify regulatory population processes, the responses of populations to additional anthropogenic mortality may be assessed with more realism in PVA. Using Bayesian state‐space models fitted to population time series from three sympatric seabird populations, selected for varied life histories, we inferred the extent to which their dynamics are driven by environmental stochasticity and density‐dependence. Based on these inferences, we conducted an exhaustive PVA across credible parameterizations for intrinsic and extrinsic population regulation, simulated as a closed and re‐seeded system. Scenarios of anthropogenic mortality, along a sliding scale of precaution, were applied both proportionally and as a fixed quota using Potential Biological Removal (PBR). Baseline results from fitting revealed clear environmental regulation in two of our three species. Crucially, we found that for our empirically derived, realistic model parameterizations there are risks of decline to real populations even under very precautionary mortality scenarios. We find that PBR is dubious in application as a sustainable tool for population assessment when we account for regulation. Closed versus re‐seeded models showed a large divergence in outcomes, with sharper declines in closed simulations. Fixed‐quota mortality typically induced greater population declines comparative to proportional mortality, subject to regulation and re‐seeding. Synthesis and applications. Practitioners using arbitrary formulations of population regulation risk over‐precaution (economic constraint) or under‐precaution (endangering populations). The demands of increased economic development and preservation of wildlife require that methodologies apply techniques that confer reality and rigour to assessment. The current practice of employing models lacking density‐dependence and empirical environmental information imposes limitations in the efficacy of estimating impacts. Here, we provide a method to quantify the conditions that predominantly regulate a population and exacerbate the risk of decline from anthropogenic mortality. It is in the interests of both developers and conservationists to apply methods in population impact assessments that capture realism in the processes driving population dynamics

    Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxin contamination in barley (part II)

    Get PDF
    BACKGROUND: Barley is one of the most important winter crops in the world, with multiple uses such as human consumption, animal feed and for the malting industry. This crop is affected by different diseases, such as Fusarium Head Blight (FHB), that causes losses in yield and quality. In the last years F. graminearum and F. poae were two of the most frequently isolated species in barley grains, so the aim of this study was to evaluate the interaction between these Fusarium species and the effects on disease parameters, grain quality and mycotoxin contamination on five barley genotypes under field conditions. RESULTS: Statistical differences between Fusarium treatments for some parameters depending mainly on the year/genotype were found. The results showed that germination process was affected by both Fusarium species. As to grain quality and the different hordein fractions, it was observed that F. graminearum affects preferentially D and C hordeins Different concentrations of nivalenol, deoxynivalenol and their acetylated derivatives (3-ADON and 15-ADON) were detected. CONCLUSIONS: In the present work, no evidence of synergism between F. graminearum and F. poae were found regarding disease parameters and mycotoxin contamination. However, at least in the years with favorable climatic conditions to FHB development and depending on the barley genotype, a continuous monitoring is deemed necessary to prevent the negative impact on protein composition and germinative parametersFil: Martínez, Mauro. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnolológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología. Laboratorio de Biología Funcional y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Ramirez Albuquerque, Lady Diana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Dinolfo, María Inés. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnolológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología. Laboratorio de Biología Funcional y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Fernández Pinto, Virginia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Stenglein, Sebastian Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnolológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología. Laboratorio de Biología Funcional y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; Argentin

    Snow information is required in subcontinental scale predictions of mountain plant distributions

    Get PDF
    Aim To examine how snow cover and permafrost affect plant species distributions at a subcontinental extent. Location Mountain realm of Fennoscandia, northern Europe. Time period Species data from 1 January 1990-25 February 2019. Major taxa studied Arctic-alpine and boreal vascular plants. Methods We examined the effect of snow persistence and permafrost occurrence on the distributions of arctic-alpine and boreal plant species while controlling for climate, topography and geological factors. Data comprised 475,811 observations from 671 species in the Fennoscandian mountains. We investigated the relationships between species distributions and environmental variables using four modelling methods and ensemble modelling building on both non-spatial and spatial models. Results Snow persistence was the most important driver of plant species distributions, with the greatest variable importance for both arctic-alpine (38.2%) and boreal (49.9%) species. Permafrost had a consistent minor effect on the predicted distributions. Arctic-alpine plants occur in areas with long snow persistence and permafrost, whereas boreal species showed the opposite habitat preferences. Main conclusions Our results highlight the importance of snow persistence in driving the distribution of vascular plant species in cold environments at a subcontinental scale. The notable contribution of the cryosphere to plant species distribution models indicates that the inclusion of snow information in particular may improve our understanding and model predictions of biogeographical patterns in cold regions.Peer reviewe
    corecore