49 research outputs found

    Severe Paradoxical Reaction Requiring Tracheostomy in a Human Immunodeficiency Virus (HIV)-negative Patient with Cervical Lymph Node Tuberculosis

    Get PDF
    During drug treatment of tuberculous lymphadenitis, paradoxical response (PR) may occasionally occur. Continued treatment or lymph node aspiration improves PR without severe sequelae. However, we report a case of severe PR in a patient with cervical lymph node tuberculosis causing airway obstruction due to retropharyngeal lymph node swelling during antituberculous treatment. Tracheostomy and drainage of the node were performed to secure the airway. Possible airway obstruction due to PR must be suspected when cervical lymph node tuberculosis involves the retropharyngeal lymph node

    Neuroprotective effect of dexmedetomidine on autophagy in mice administered intracerebroventricular injections of Aβ25–35

    Get PDF
    Alzheimer’s disease (AD), one of the most prevalent neurodegenerative diseases is associated with pathological autophagy-lysosomal pathway dysfunction. Dexmedetomidine (Dex) has been suggested as an adjuvant to general anesthesia with advantages in reducing the incidence of postoperative cognitive dysfunction in Dex-treated patients with AD and older individuals. Several studies reported that Dex improved memory; however, evidence on the effects of Dex on neuronal autophagy dysfunction in the AD model is lacking. We hypothesized that Dex administration would have neuroprotective effects by improving pathological autophagy dysfunction in mice that received an intracerebroventricular (i.c.v.) injection of amyloid β-protein fragment 25–35 (Aβ25–35) and in an autophagy-deficient cellular model. In the Y-maze test, Dex reversed the decreased activity of Aβ25–35 mice. Additionally, it restored the levels of two memory-related proteins, phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) and postsynaptic density-95 (PSD-95) in Aβ25–35 mice and organotypic hippocampal slice culture (OHSC) with Aβ25–35. Dex administration also resulted in decreased expression of the autophagy-related microtubule-associated proteins light chain 3-II (LC3-II), p62, lysosome-associated membrane protein2 (LAMP2), and cathepsin D in Aβ25–35 mice and OHSC with Aβ25–35. Increased numbers of co-localized puncta of LC3-LAMP2 or LC3-cathepsin D, along with dissociated LC3-p62 immunoreactivity following Dex treatment, were observed. These findings were consistent with the results of western blots and the transformation of double-membrane autophagosomes into single-membraned autolysosomes in ultrastructures. It was evident that Dex treatment alleviated impaired autolysosome formation in Aβ mice. Our study demonstrated the improvement of memory impairment caused by Dex and its neuroprotective mechanism by investigating the role of the autophagy-lysosomal pathway in a murine Aβ25–35 model. These findings suggest that Dex could be used as a potential neuroprotective adjuvant in general anesthesia to prevent cognitive decline

    MicroRNA: A signature for cancer progression

    Get PDF
    MicroRNAs (miRNAs) are a group of small non-coding RNAs that post-transcriptionally control expression of genes by targeting mRNAs. miRNA alterations partake in the establishment and progression of different types of human cancer. Consequently, expression profiling of miRNA in human cancers has correlations with cancer detection, staging, progression, and response to therapies. Particularly, amplification, deletion, abnormal pattern of epigenetic factors and the transcriptional factors that mediate regulation of primary miRNA frequently change the landscape of miRNA expression in cancer. Indeed, changes in the quantity and quality of miRNAs are associated with the initiation of cancer, its progression and metastasis. Additionally, miRNA profiling has been used to categorize genes that can affect oncogenic pathways in cancer. Here, we discuss several circulating miRNA signatures, their expression profiles in different types of cancer and their impacts on cellular processes

    DataSheet1_Neuroprotective effect of dexmedetomidine on autophagy in mice administered intracerebroventricular injections of Aβ25–35.PDF

    No full text
    Alzheimer’s disease (AD), one of the most prevalent neurodegenerative diseases is associated with pathological autophagy-lysosomal pathway dysfunction. Dexmedetomidine (Dex) has been suggested as an adjuvant to general anesthesia with advantages in reducing the incidence of postoperative cognitive dysfunction in Dex-treated patients with AD and older individuals. Several studies reported that Dex improved memory; however, evidence on the effects of Dex on neuronal autophagy dysfunction in the AD model is lacking. We hypothesized that Dex administration would have neuroprotective effects by improving pathological autophagy dysfunction in mice that received an intracerebroventricular (i.c.v.) injection of amyloid β-protein fragment 25–35 (Aβ25–35) and in an autophagy-deficient cellular model. In the Y-maze test, Dex reversed the decreased activity of Aβ25–35 mice. Additionally, it restored the levels of two memory-related proteins, phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) and postsynaptic density-95 (PSD-95) in Aβ25–35 mice and organotypic hippocampal slice culture (OHSC) with Aβ25–35. Dex administration also resulted in decreased expression of the autophagy-related microtubule-associated proteins light chain 3-II (LC3-II), p62, lysosome-associated membrane protein2 (LAMP2), and cathepsin D in Aβ25–35 mice and OHSC with Aβ25–35. Increased numbers of co-localized puncta of LC3-LAMP2 or LC3-cathepsin D, along with dissociated LC3-p62 immunoreactivity following Dex treatment, were observed. These findings were consistent with the results of western blots and the transformation of double-membrane autophagosomes into single-membraned autolysosomes in ultrastructures. It was evident that Dex treatment alleviated impaired autolysosome formation in Aβ mice. Our study demonstrated the improvement of memory impairment caused by Dex and its neuroprotective mechanism by investigating the role of the autophagy-lysosomal pathway in a murine Aβ25–35 model. These findings suggest that Dex could be used as a potential neuroprotective adjuvant in general anesthesia to prevent cognitive decline.</p

    DataSheet2_Neuroprotective effect of dexmedetomidine on autophagy in mice administered intracerebroventricular injections of Aβ25–35.PDF

    No full text
    Alzheimer’s disease (AD), one of the most prevalent neurodegenerative diseases is associated with pathological autophagy-lysosomal pathway dysfunction. Dexmedetomidine (Dex) has been suggested as an adjuvant to general anesthesia with advantages in reducing the incidence of postoperative cognitive dysfunction in Dex-treated patients with AD and older individuals. Several studies reported that Dex improved memory; however, evidence on the effects of Dex on neuronal autophagy dysfunction in the AD model is lacking. We hypothesized that Dex administration would have neuroprotective effects by improving pathological autophagy dysfunction in mice that received an intracerebroventricular (i.c.v.) injection of amyloid β-protein fragment 25–35 (Aβ25–35) and in an autophagy-deficient cellular model. In the Y-maze test, Dex reversed the decreased activity of Aβ25–35 mice. Additionally, it restored the levels of two memory-related proteins, phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) and postsynaptic density-95 (PSD-95) in Aβ25–35 mice and organotypic hippocampal slice culture (OHSC) with Aβ25–35. Dex administration also resulted in decreased expression of the autophagy-related microtubule-associated proteins light chain 3-II (LC3-II), p62, lysosome-associated membrane protein2 (LAMP2), and cathepsin D in Aβ25–35 mice and OHSC with Aβ25–35. Increased numbers of co-localized puncta of LC3-LAMP2 or LC3-cathepsin D, along with dissociated LC3-p62 immunoreactivity following Dex treatment, were observed. These findings were consistent with the results of western blots and the transformation of double-membrane autophagosomes into single-membraned autolysosomes in ultrastructures. It was evident that Dex treatment alleviated impaired autolysosome formation in Aβ mice. Our study demonstrated the improvement of memory impairment caused by Dex and its neuroprotective mechanism by investigating the role of the autophagy-lysosomal pathway in a murine Aβ25–35 model. These findings suggest that Dex could be used as a potential neuroprotective adjuvant in general anesthesia to prevent cognitive decline.</p

    Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis

    No full text
    Low bone mass and osteopenia have been reported in the axial and peripheral skeleton of adolescent idiopathic scoliosis (AIS) patients. Furthermore, several recent studies have shown that gene polymorphisms are related to osteoporosis. However, no study has yet linked polymorphisms in the vitamin D receptor (VDR) gene and bone mass in AIS. Accordingly, the authors examined the association between bone mass and VDR gene polymorphisms in 198 girls diagnosed with AIS. The VDR BsmI (rs1544410), FokI (rs2228670) and Cdx2 (rs11568820) polymorphisms and bone mineral density at the lumbar spine (LSBMD) and femoral neck (FNBMD) were analyzed and compared to their levels in healthy controls. Mean LSBMD and FNBMD in AIS patients were lower than in age- and sex-matched healthy controls (P = 0.0022 and P = 0.0013, respectively). A comparison of genotype frequencies in AIS patients and controls revealed a significant difference for the BsmI polymorphism only (P = 0.0054). Furthermore, a significant association was found between the VDR BsmI polymorphism and LSBMD. In particular, LSBMD in AIS patients with the AA genotype was found to be significantly lower than in patients with the GA (P < 0.05) or GG (P < 0.01) genotypes. However, no significant association was found between LSBMD or FNBMD and the VDR FokI or Cdx2 polymorphisms. These results suggest that the VDR BsmI polymorphism is associated with LSBMD in girls with AIS

    Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis

    No full text
    Generalized low bone mass and osteopenia have been reported in the axial and peripheral skeleton of adolescent idiopathic scoliosis (AIS) patients. Recently, many studies have shown that gene polymorphisms are related to osteoporosis. However, no studies have linked the association between gene polymorphisms and bone mass of AIS. Therefore, this study examined the association between the bone mass and RANKL, RANK, and OPG gene polymorphisms in 198 girls diagnosed with AIS. OPG 163 A → G, 209 G → A, 245 T → G, and 1181 G → C polymorphisms; RANK 421 C → T and 575 C → T polymorphisms; and RANKL rs12721445 and rs2277438 polymorphisms, as well as the bone mineral density at the lumbar spine (LSBMD) and femoral neck (FNBMD) were analyzed. The 163 A → G, 209 G → A, and 245 T → G polymorphisms in the OPG gene were in complete linkage. No RANK 421 C → T and 575 C → T polymorphisms or RANKL rs12711445 polymorphism were observed. There was a significant association between the OPG gene 1181 G → C polymorphism and LSBMD. LSBMD in AIS with the CC genotype was found to be significantly higher than in AIS with the GC (P < 0.05) or GG (P < 0.01) genotype. However, there was no significant association between LSBMD or FNBMD and the OPG gene 245 T → G polymorphism or the RANKL rs2277438 polymorphism. These results suggest that the OPG gene 1181 G → C polymorphism is associated with LSBMD in girls with AIS
    corecore