3,799 research outputs found
Origin of the anomalies: the modified Heisenberg equation
The origin of the anomalies is analyzed. It is shown that they are due to the
fact that the generators of the symmetry do not leave invariant the domain of
definition of the Hamiltonian and then a term, normally forgotten in the
Heisenberg equation, gives an extra contribution responsible for the non
conservation of the charges. This explanation is equivalent to that of the
Fujikawa in the path integral formalism. Finally, this approach is applied to
the conformal symmetry breaking in two-dimensional quantum mechanics.Comment: 7 pages, LaTe
Excited state entanglement in homogeneous fermionic chains
We study the Renyi entanglement entropy of an interval in a periodic
fermionic chain for a general eigenstate of a free, translational invariant
Hamiltonian. In order to analytically compute the entropy we use two technical
tools. The first one is used to reduce logarithmically the complexity of the
problem and the second one to compute the R\'enyi entropy of the chosen
subsystem. We introduce new strategies to perform the computations, derive new
expressions for the entropy of these general states and show the perfect
agreement of the analytical computations and the numerical outcome. Finally we
discuss the physical interpretation of our results and generalise them to
compute the entanglement entropy for a fragment of a fermionic ladder.Comment: 31 pages, 1 table, 8 figures. Final version published in J. Phys. A.
References and section added. Typos correcte
Scale symmetry in classical and quantum mechanics
In this paper we address again the issue of the scale anomaly in quantum
mechanical models with inverse square potential. In particular we examine the
interplay between the classical and quantum aspects of the system using in both
cases an operatorial approach.Comment: 11 pages, Late
EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition
IJCCI 2012Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret
or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode
decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method
to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare
the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural
networks. For both cases, the classification rate is improved about 20%
Superconducting atomic contacts under microwave irradiation
We have measured the effect of microwave irradiation on the dc
current-voltage characteristics of superconducting atomic contacts. The
interaction of the external field with the ac supercurrents leads to replicas
of the supercurrent peak, the well known Shapiro resonances. The observation of
supplementary fractional resonances for contacts containing highly transmitting
conduction channels reveals their non-sinusoidal current-phase relation. The
resonances sit on a background current which is itself deeply modified, as a
result of photon assisted multiple Andreev reflections. The results provide
firm support for the full quantum theory of transport between two
superconductors based on the concept of Andreev bound states
Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system
Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans
Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity
After midline crossing, axons of dorsolateral commissural neurons turn rostrally into the longitudinal axis of the spinal cord. In mouse, the graded distribution of Wnt4 attracts post-crossing axons rostrally. In contrast, in the chicken embryo, the graded distribution of Sonic hedgehog (Shh) guides post-crossing axons by a repulsive mechanism mediated by hedgehog-interacting protein. Based on these observations, we tested for a possible cooperation between the two types of morphogens. Indeed, we found that Wnts also act as axon guidance cues in the chicken spinal cord. However, in contrast to the mouse, Wnt transcription did not differ along the anteroposterior axis of the spinal cord. Rather, Wnt function was regulated by a gradient of the Wnt antagonist Sfrp1 (Secreted frizzled-related protein 1) that in turn was shaped by the Shh gradient. Thus, Shh affects post-crossing axon guidance both directly and indirectly by regulating Wnt function
The effect of the FIFA 11 prevention programmes on the overall injury rate in football:a systematic review and meta-analysis
Efectos de la práctica deportiva sobre las características óseas de los miembros inferiores en deportistas
Los objetivos de la presente revisión son, por un lado, dar a conocer el estado actual de la investigación realizada sobre las diferentes adaptaciones óseas derivadas de la práctica deportiva en los miembros inferiores y, por otro, determinar qué tipo de actividades o especialidades deportivas son las más indicadas para evitar o frenar el desarrollo de la osteoporosis en estas estructuras óseas
Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression
The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression.We would like to thank Drs. Donald Comb, Rich Roberts, William Jack and Clotilde Carlow at New England Biolabs Inc. for research support and encouragement. The authors thank Dr. Lauren Brown (Boston University Center for Molecular Discovery) for the preparation of FQI1. UH research on this project was supported by Ignition Awards from Boston University and a Johnson & Johnson Clinical Innovator's Award through Boston University. SES research is supported by the NIH (P50 GM067041 & R24 GM111625). Research performed by HGC was partly a requirement for the MCBB graduate program at Boston University and supported by NEB. (Boston University; Johnson & Johnson Clinical Innovator's Award through Boston University; P50 GM067041 - NIH; R24 GM111625 - NIH; NEB)Published versio
- …
