3,799 research outputs found

    Origin of the anomalies: the modified Heisenberg equation

    Get PDF
    The origin of the anomalies is analyzed. It is shown that they are due to the fact that the generators of the symmetry do not leave invariant the domain of definition of the Hamiltonian and then a term, normally forgotten in the Heisenberg equation, gives an extra contribution responsible for the non conservation of the charges. This explanation is equivalent to that of the Fujikawa in the path integral formalism. Finally, this approach is applied to the conformal symmetry breaking in two-dimensional quantum mechanics.Comment: 7 pages, LaTe

    Excited state entanglement in homogeneous fermionic chains

    Full text link
    We study the Renyi entanglement entropy of an interval in a periodic fermionic chain for a general eigenstate of a free, translational invariant Hamiltonian. In order to analytically compute the entropy we use two technical tools. The first one is used to reduce logarithmically the complexity of the problem and the second one to compute the R\'enyi entropy of the chosen subsystem. We introduce new strategies to perform the computations, derive new expressions for the entropy of these general states and show the perfect agreement of the analytical computations and the numerical outcome. Finally we discuss the physical interpretation of our results and generalise them to compute the entanglement entropy for a fragment of a fermionic ladder.Comment: 31 pages, 1 table, 8 figures. Final version published in J. Phys. A. References and section added. Typos correcte

    Scale symmetry in classical and quantum mechanics

    Full text link
    In this paper we address again the issue of the scale anomaly in quantum mechanical models with inverse square potential. In particular we examine the interplay between the classical and quantum aspects of the system using in both cases an operatorial approach.Comment: 11 pages, Late

    EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition

    Get PDF
    IJCCI 2012Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%

    Superconducting atomic contacts under microwave irradiation

    Get PDF
    We have measured the effect of microwave irradiation on the dc current-voltage characteristics of superconducting atomic contacts. The interaction of the external field with the ac supercurrents leads to replicas of the supercurrent peak, the well known Shapiro resonances. The observation of supplementary fractional resonances for contacts containing highly transmitting conduction channels reveals their non-sinusoidal current-phase relation. The resonances sit on a background current which is itself deeply modified, as a result of photon assisted multiple Andreev reflections. The results provide firm support for the full quantum theory of transport between two superconductors based on the concept of Andreev bound states

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity

    Get PDF
    After midline crossing, axons of dorsolateral commissural neurons turn rostrally into the longitudinal axis of the spinal cord. In mouse, the graded distribution of Wnt4 attracts post-crossing axons rostrally. In contrast, in the chicken embryo, the graded distribution of Sonic hedgehog (Shh) guides post-crossing axons by a repulsive mechanism mediated by hedgehog-interacting protein. Based on these observations, we tested for a possible cooperation between the two types of morphogens. Indeed, we found that Wnts also act as axon guidance cues in the chicken spinal cord. However, in contrast to the mouse, Wnt transcription did not differ along the anteroposterior axis of the spinal cord. Rather, Wnt function was regulated by a gradient of the Wnt antagonist Sfrp1 (Secreted frizzled-related protein 1) that in turn was shaped by the Shh gradient. Thus, Shh affects post-crossing axon guidance both directly and indirectly by regulating Wnt function

    Efectos de la práctica deportiva sobre las características óseas de los miembros inferiores en deportistas

    Full text link
    Los objetivos de la presente revisión son, por un lado, dar a conocer el estado actual de la investigación realizada sobre las diferentes adaptaciones óseas derivadas de la práctica deportiva en los miembros inferiores y, por otro, determinar qué tipo de actividades o especialidades deportivas son las más indicadas para evitar o frenar el desarrollo de la osteoporosis en estas estructuras óseas

    Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression

    Get PDF
    The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression.We would like to thank Drs. Donald Comb, Rich Roberts, William Jack and Clotilde Carlow at New England Biolabs Inc. for research support and encouragement. The authors thank Dr. Lauren Brown (Boston University Center for Molecular Discovery) for the preparation of FQI1. UH research on this project was supported by Ignition Awards from Boston University and a Johnson & Johnson Clinical Innovator's Award through Boston University. SES research is supported by the NIH (P50 GM067041 & R24 GM111625). Research performed by HGC was partly a requirement for the MCBB graduate program at Boston University and supported by NEB. (Boston University; Johnson & Johnson Clinical Innovator's Award through Boston University; P50 GM067041 - NIH; R24 GM111625 - NIH; NEB)Published versio
    corecore